
SmartDesign MSS
ACE Simulation

Libero® IDE Software

Revision 2 2

Table of Contents

Introduction . 3

1 Creating the Design . 5
Configuring the MSS . 5

Generate the MSS - Create a Top Level SmartDesign Wrapper . 7

2 Preparing the Testbench . 9
Creating a Custom Testbench . 9

Modifying Our BFM Script . 11

Associating our Custom Testbench with our Design . 12

Simulate . 12

3 CAE Analog Drivers . 13
Connecting Analog Ports with Verilog . 13

Connecting Analog Ports with VHDL . 15

A Product Support . 19
Contacting the Customer Technical Support Center . 19

Non-Technical Customer Service . 19

Introduction

The ACE functionality can be simulated in ModelSim™ to verify that your configuration works based on
your system input.

This document walks through a simple example of simulating the ACE. Please refer to Simulating the
Microcontroller Subsystem for a more general overview of the simulation strategy for SmartFusion MSS.

Details about the analog driver functions that are available in the SmartFusion library are at the end of
this document in the Analog Drivers section.
Revision 2 3

../MSS/mss_sim_ug_1.pdf
../MSS/mss_sim_ug_1.pdf

1 – Creating the Design

We will create a simple SmartFusion MSS and ACE configuration to demonstrate how you can simulate
the ACE.

Configuring the MSS
We'll disable the following peripherals since we will not be using them in this example:

• UARTs

• SPIs

• I2Cs

• MAC

• Fabric Interface

• External Memory Controller

We'll create a simple ACE configuration consisting of a single ADC Direct Input service with a few flags,
and a simple sampling sequence loop. The configuration is shown in Figure 1-1 and Figure 1-2.

Figure 1-1 • ADC Direct Input and Threshold Configuration
Revision 2 5

We use the Flags tab to determine which Flag register and bits our flags were mapped to. This is useful
when we write our BFM script later (as shown in Figure 1-3).

The Flag mapping tells us that

• OVER1V was mapped to PPE_FLAGS0 register, bit 0

• OVER2V was mapped to PPE_FLAGS0 register, bit 1

• UNDER1V was mapped to PPE_SFFLAGS0 register, bit 0

Figure 1-2 • Sampling Sequence Configuration

Figure 1-3 • Flag Mapping
6 Revision 2

Our MSS design should look like Figure 1-4 after configuration:

Generate the MSS - Create a Top Level SmartDesign Wrapper
Create a top level SmartDesign component and instantiate our newly configured MSS component. Set
the top level SmartDesign as root, and generate the SmartDesign (as shown in Figure 1-5).

Figure 1-4 • Sample MSS Design After Configuration

Figure 1-5 • Top-Level SmartDesign on the Canvas
Revision 2 7

2 – Preparing the Testbench

Now that the design is generated, let's open up two files that we'll need for simulation purposes.

Go to the Libero® IDE Project Manager Files tab and open the testbench.v and user.bfm from your MSS
component (as shown in Figure 2-1).

Creating a Custom Testbench
The testbench.v file that is automatically generated by SmartDesign is useful for basic simulations, but
for ACE simulations we will need to customize this basic testbench.

To create a new testbench:
1. From the Libero IDE Project Manager choose File > New.

Select HDL Stimulus File

Name the file ace_testbench and click OK.

2. Copy and paste the contents of testbench.v to ace_testbench. We now have a testbench that we
can customize for ACE simulations.

Figure 2-1 • Files Tab (File Hierarchy) in the Project Manager
Revision 2 9

3. Add a simple SmartFusion CAE library analog driver function to drive our analog input service
ADCDirectInput. The code fragment in Figure 2-2 should be added to your testbench. A voltage
value is ramped up, then down.

Notice the drive_analog_input function that is used to convert the real value into a value that can be
driven into the analog port. Refer to the "CAE Analog Drivers" on page 13 for more details.

Figure 2-2 • Custom Testbench Code Fragment
10 Revision 2

Modifying Our BFM Script
We will create a simple BFM script that just loops and reads our PPE registers. This mimics a Cortex M3
polling scheme. The addresses of the PPE_FLAGSn and PPE_SFFLAGS registers are available in the
Actel SmartFusion Microcontroller Subsystem (MSS) User’s Guide. It is also shown in the Flags tab in
the ACE configurator, in addition to the bit in which the flag is assigned to in the register.

In the user.bfm script file, we will add the commands shown in Table 2-1.

In this script, we continually read the PPE_FLAGS0 and PPE_SFFLAGS register addresses into 2 data
variables. If we wanted to create a more complex scenario, we could take those values and write them to
GPIOs or perform other actions in our BFM commands based upon their value.

Table 2-1 • user.bfm Script File Commands

ACE register offsets

constant PPE_FLAGS0 0x1450;

constant PPE_SFFLAGS 0x1460;

procedure user_main;

uncomment the following include if you have soft peripherals in the fabric

that you want to simulate. The subsystem.bfm file contains the memory map

of the soft peripherals.

include "subsystem.bfm"

add your BFM commands below:

int flags0_value;

int sflag_value;

int loop;

set loop 1;

while loop == 1

 readstore w ACE PPE_FLAGS0 flags0_value;

 readstore w ACE PPE_SFFLAGS sflag_value;

endwhile

return
Revision 2 11

http://www.actel.com/products/smartfusion/docs.aspx

Associating our Custom Testbench with our Design
We need to tell the Libero IDE to use our custom testbench for simulation instead of the system
generated one.

1. Right-click the SDTOP component in the Project Manager Design Hierarchy and choose
Organize Stimulus.

2. We want to use ace_testbench instead of testbench.v. So select testbench.v from the right panel
and click Remove. Then select ace_testbench.v from the left panel and click Add (Figure 2-3).

3. Click OK

Simulate
Now we are ready to simulate.

In the Project Manager Project Flow window click the ModelSim button.

In ModelSim's command window type run 3ms. In our example, we are running for 3ms because we
have a long hardcoded delay in our testbench, because we want to ensure that the ADC calibration is
completed before we begin processing.

Figure 2-3 • Organize Stimulus Dialog Box
12 Revision 2

3 – CAE Analog Drivers

Analog ports are represented by a 1-bit wide port in both the Verilog and VHDL simulation models. Driver
modules are developed to drive a real value through a 1-bit port and to read an analog value from a 1-bit
port.

The drive module/function serializes and streams the real value represented in floating point
representation (64-bit value) in zero simulation time, using delta delays. The read module deserializes a
stream into a 64-bit value.

Interfaces of all the drivers are given later in respective testbenches

• drive_analog_io and drive_analog_input can drive an analog input. Input is provided to this
module as 64 bit value.

• read_analog_io can read any analog signal coming from the Analog Block. Output is provided as
a 64 bit value.

• drive_temperature_monitor is used to drive the temperature pad. This module takes temperature
in Celsius and converts it into a voltage and drives it over the digital input.

• drive_current_monitor or drive_current_inputs can be used to drive the current pad that will be
used for Current Monitoring. As an input it takes the voltage at AT pad, the resistor and current
values, to calculate the voltage on the AC quad.

– Equation is AC(V) = AT(V) + Resistor * current

– Interface information of both the drivers is given below

Connecting Analog Ports with Verilog
Use $realtobits function to convert the real value to 64 bit value or $bitstoreal function can be used to
convert the data from 64 bit to real value.
Revision 2 13

Table 3-1 shows the analog drivers that are available in Verilog.

Table 3-1 • Verilog Drivers

module drive_analog_io (parallel_in, serial_out);

 input [63:0] parallel_in;

 output serial_out;

endmodule

module drive_analog_input (parallel_in, serial_out);

 input [63:0] parallel_in;

 output serial_out;

endmodule

module drive_current_monitor (temp_vect, resistor_vect, current_vect, serial_out);

 input [63:0] temp_vect;

 input [63:0] resistor_vect;

 input [63:0] current_vect;

 output serial_out;

endmodule

module drive_current_inputs (current_vect, resistor_vect, temp_vect, ac, at);

 input [63:0] temp_vect;

 input [63:0] resistor_vect;

 input [63:0] current_vect;

 output ac;

 output at;

endmodule

module drive_temperature_quad (temp_celsius, serial_out);

 input [63:0] temp_celsius;

 output serial_out;

endmodule

module read_analog_io (serial_in, read_enb, parallel_out);

 input serial_in;

 input read_enb;

 output reg [63:0] parallel_out;

endmodule
14 Revision 2

Table 3-2 demonstrates all the relevant drivers.

Connecting Analog Ports with VHDL
realtobits function (equivalent to $realtobits system task in verilog) and bitstoreal function (equivalent to
$bitstoreal in verilog) are available in float_pkg package present in smartfusion library. Notice that this
package is added to the testbench at the beginning. realtobits can be used to convert the real value to 64
bit floating point representation. bitstoreal function is available in float_pkg package to convert this 64 bit
value to a real value.

Table 3-2 • Driver Examples

module example_tb ();

real varef_real;

real av0_in = 1.0;

real at0_in = 20.0;

real ac1_in = 1.0;

real res1_in = 0.1;

real at1_in = 0.5;

real ac2_in = 1.0;

real res2_in = 0.1;

real at2_in = 0.5;

wire av0, at0, ac1, at1, ac2, at2;

wire [63:0] varef_bits;

//drive voltage input

drive_analog_input inst0 ($realtobits(av0_in), av0);

//Read analog output

read_analog_input inst1(varefout, varef_bits);

always @(varef_bits)

 varef_real = $bitstoreal(varef_bits);

//Drive temperature quad where at0_in is in 0C

drive_temperature_quad inst2($realtobits(at0_in), at0);

//Drive current monitor. ac1_in is current in A. res1_in is resistance value

//in ohms and at1_in is voltage at at1 pad.

drive_current_monitor inst3 ($realtobits(at1_in), $realtobits(res1_in), $realtobits(ac1_in),
ac1);

drive_analog_input inst0 ($realtobits(at1_in), at1);

//Drive current inputs. ac2_in is current in A. res2_in is resistance value

//in ohms and at2_in is voltage at at1 pad.

drive_current_inputs inst4 ($realtobits(ac2_in), $realtobits(res2_in), $realtobits(at2_in),
ac2, at2);

endmodule
Revision 2 15

The example below illustrates the drivers.

library smartfusion;

use smartfusion.float_pkg.all;

entity example_tb is

end example_tb;

architecture tb_arch of example_tb is

begin -- tb_arch

signal av0_in : real := 0.0; -- voltage value

signal varef_real : real;

signal varef_bits : std_logic_vector(63 downto 0);

signal at0_in : real := 0.0; -- temparature in celsius

signal ac1_in : real := 0.0; -- current value

signal res1_in : real := 0.0; -- resistor value

signal at1_in : real := 0.0; -- voltage at temparature pad

signal ac2_in : real := 0.0; -- current value

signal res2_in : real := 0.0; -- resistor value

signal at2_in : real := 0.0; -- voltage at temparature pad

signal av0 : std_logic;

signal at0 : std_logic;

signal ac1 : std_logic;

signal at1 : std_logic;

signal ac2 : std_logic;

signal at2 : std_logic;

component drive_analog_input

 port(

 -- Inputs

 parallel_in : in std_logic_vector(63 downto 0);

 -- Outputs

 serial_out : out std_logic

);

end component;

component read_analog_io

 port(serial_in : in std_logic;

 Parallel_out : out std_logic_vector(63 downto 0));

end component;

component drive_temparature_quad

 port (

 temp_celsius : in std_logic_vector(63 downto 0);
16 Revision 2

 serial_out : out std_logic);

end component;

component drive_current_monitor

 port (

 temp_vect : in std_logic_vector(63 downto 0);

 resistor_vect : in std_logic_vector(63 downto 0);

 current_vect : in std_logic_vector(63 downto 0);

 serial_out : out std_logic);

end component;

component drive_current_inputs

 port (

 current_vect : in std_logic_vector(63 downto 0);

 resistor_vect : in std_logic_vector(63 downto 0);

 temp_vect : in std_logic_vector(63 downto 0);

 ac : out std_logic;

 at : out std_logic);

end component;

begin

--drive voltage input

u_drv_av0 : drive_analog_input

port map (parallel_in => realtobits(av0_in),

 serial_out => av0);

--Read analog output

u_read_varef : read_analog_ip

 port map (

 serial_in => varefout,

 parallel_out => varef_bits);

varef_real <= bitstoreal(varef_bits);

-- Drive temperature quad where at0_in is in 0C

u_drv_at0 : drive_temparature_quad

 port map (

 temp_celsius => realtobits(at0_in),

 serial_out => at0);

--Drive current monitor. ac1_in is current in A. res1_in is resistance value, --in ohms
and at1_in is voltage at at1 pad.

u_drv_ac1 : drive_current_monitor

 port map (

 temp_vect => realtobits(at1_in),
Revision 2 17

 res_vect => realtobits(res1_in),

 current_vect => realtobits(ac1_in),

 serial_out => ac1);

u_drv_at1 : drive_analog_input

port map (parallel_in => realtobits(at1_in),

 serial_out => at1);

--Drive current inputs. ac2_in is current in A. res2_in is resistance value --in ohms
and at2_in is voltage at "at"

u_drv_ac2 : drive_current_inputs

 port map (

 temp_vect => realtobits(at2_in),

 res_vect => realtobits(res2_in),

 current_vect => realtobits(ac2_in),

 ac => ac2,

 at => at2);

end tb_arch;
18 Revision 2

A – Product Support

The Microsemi SoC Products Group backs its products with various support services including a
Customer Technical Support Center and Non-Technical Customer Service. This appendix contains
information about contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center
Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center spends
a great deal of time creating application notes and answers to FAQs. So, before you contact us, please
visit our online resources. It is very likely we have already answered your questions.

Technical Support
Microsemi customers can receive technical support on Microsemi SoC products by calling Technical
Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit
and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.800.262.1060

Phone (International): +1 650.318.4460

Email: soc_tech@microsemi.com

ITAR Technical Support
Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR
Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also
have the option to interactively submit and track cases online at My Cases or submit questions through
email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.888.988.ITAR

Phone (International): +1 650.318.4900

Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

Microsemi’s customer service representatives are available Monday through Friday, from 8 AM to 5 PM
Pacific Time, to answer non-technical questions.

Phone: +1 650.318.2470
Revision 2 19

ng

© 201
are th

Mi y.
Co g
an s
lea al
ma

Cor
Mic
238
Irvin
926
US
Pho
Fax
SoC Products Group (Hong Kong)
Room 2107, China Resources Buildi
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

SoC Products Group
2061 Stierlin Court
Mountain View, CA
94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600
www.actel.com

SoC Products Group (Europe)
River Court, Meadows Business Park
Station Approach, Blackwatery
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

SoC Products Group (Japan)
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

crosemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of semiconductor technolog
mmitted to solving the most critical system challenges, Microsemi’s products include high-performance, high-reliability analo
d RF devices, mixed signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi serve
ding system manufacturers around the world in the defense, security, aerospace, enterprise, commercial, and industri
rkets. Learn more at www.microsemi.com.

porate Headquarters
rosemi Corporation
1 Morse Avenue
e, CA
14-6233

A
ne 949-221-7100
 949-756-0308
5-02-00220-1/01.11

0 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks
e property of their respective owners.

http://www.actel.com
http://www.microsemi.com

	Introduction
	1 – Creating the Design
	Configuring the MSS
	Generate the MSS - Create a Top Level SmartDesign Wrapper

	2 – Preparing the Testbench
	Creating a Custom Testbench
	Modifying Our BFM Script
	Associating our Custom Testbench with our Design
	Simulate

	3 – CAE Analog Drivers
	Connecting Analog Ports with Verilog
	Connecting Analog Ports with VHDL

	A – Product Support
	Contacting the Customer Technical Support Center
	Technical Support
	ITAR Technical Support

	Non-Technical Customer Service

