SmartDesign MSS

ACE Simulation

Table of Contents

	Introduction	. 3
1	Creating the Design Configuring the MSS Generate the MSS - Create a Top Level SmartDesign Wrapper	. 5 . 5 . 7
2	Preparing the Testbench Creating a Custom Testbench Modifying Our BFM Script Associating our Custom Testbench with our Design Simulate	9 . 9 11 12 12
3	CAE Analog Drivers	13 13 15
A	Product Support	19 19 19

Introduction

The ACE functionality can be simulated in ModelSim[™] to verify that your configuration works based on your system input.

This document walks through a simple example of simulating the ACE. Please refer to Simulating the Microcontroller Subsystem for a more general overview of the simulation strategy for SmartFusion MSS.

Details about the analog driver functions that are available in the SmartFusion library are at the end of this document in the Analog Drivers section.

1 – Creating the Design

We will create a simple SmartFusion MSS and ACE configuration to demonstrate how you can simulate the ACE.

Configuring the MSS

We'll disable the following peripherals since we will not be using them in this example:

- UARTs
- SPIs
- I2Cs
- MAC
- Fabric Interface
- External Memory Controller

We'll create a simple ACE configuration consisting of a single ADC Direct Input service with a few flags, and a simple sampling sequence loop. The configuration is shown in Figure 1-1 and Figure 1-2.

	ADCDire	ectInput_0		🗖 Send raw A	ADC result to D	MA AM	
Acquisiti	on time: 10						
-Digital	filtering			🗖 Linear tran	sformation		
Filter	ing factor: No	ne 💌		Scale factor	:		
Initia	i value; 0,	000 V		Offset:		_	
Гs	end filtered result t	o DMA		□ Send tra	nsformed resu	ilt to DMA	
		Thr	reshold Detectio	n		1	×
	Flag Name	Flag Type	Threshold	Hysteresis (mV)	Assert Samples	De-assert Samples	
	OVER1V	OVER	1	100			1
	OVER2V	OVER	2	0	0	0	l T
L	UNDERTV	UNDER	-	U	5	3	

Figure 1-1 • ADC Direct Input and Threshold Configuration

Configure ACE	Controller	F	lags		
Procedures			• = / ×		
ADC0_MAIN	Name	•		ADC	Block 0 Block 1
ADC1_MAIN					DIOCK
Operating sequence entry:	C Auto	Manual			
Details of procedure:	ADC0_MAIN				
Available signals:		Sampling rate			
	-> ->> <-	ADCDirectIng	Signal		Actual Rate (ksps) 0.000
	Calculate Ac	tual Rate	Total sar	mpling rate:	0.000 ksps
Operating sequence			_	*1	× + +
		Instru	ction		
Sample ADCDirect	Input_0	Instru	ction		

Figure 1-2 • Sampling Sequence Configuration

We use the Flags tab to determine which Flag register and bits our flags were mapped to. This is useful when we write our BFM script later (as shown in Figure 1-3).

Configure ACE	Controller	Flags			
select a register to view	w ACE flag mapping:	Available bits of PPE	_FLAGS0 register:		
⊡-Fabric ⊡-Flag Registers		Bit	Source	ACE Interrupt	Cortex-M3 Interrupt
PPE_FLAGS0 (0	x40021450)	0 ADCDirect	nput_0:0VER1V	54	118
PPE_FLAGS1 (0	×40021454)	1 ADCDirect	nput_0:0VER2V	55	119
PPE_FLAGS2 (C	x40021458)	2 <none></none>		56	120
PPE_FLAGS3 (C	x4002145c)	3 <none></none>		57	121
PPE_SEFLAGS(0x40021460)		4 <none></none>		58	122
1.5.		5 <none></none>		59	123
Configure ACE	Controller	Flags			
Select a register to vie					
⊡- Fabric ⊡- Flag Registers	W ACE riag mapping:	Bit	_SHFLAGS register:	ACE	Cortex-M3 Interrupt
 Fabric Flag Registers PPE_FLAGS0 (0 	w ACE hag mapping: 0x40021450)	Bit 0 ADCDirect	_SFFLAGS register: Source nput_0:UNDER1V	ACE Interrupt 54	Cortex-M3 Interrupt
- Fabric - Flag Registers - PPE_FLAGS0 (0 - PPE_FLAGS1	w ACE hag mapping: 0x40021450) 0x40021454)	Bit 0 ADCDirect 1 <none></none>	_SFFLAGS register: Source nput_0:UNDER1V	ACE Interrupt 54 55	Cortex-M3 Interrupt 118 119
- Fabric - Flag Registers - PPE_FLAGS0 (0 - PPE_FLAGS1 (0 - PPE_FLAGS2	w ACE riag mapping:)x40021450))x40021454))x40021458)	Bit 0 ADCDirect 1 <none> 2 <none></none></none>	_SFFLAGS register: Source nput_0:UNDER1V	ACE Interrupt 54 55 56 56	Cortex-M3 Interrupt 118 119 120
- Fabric - Flag Registers - PPE_FLAGS0 (0 - PPE_FLAGS1 (0 - PPE_FLAGS2 (0 - PPE_FLAGS2 (0 - PPE_FLAGS2 (0 - PPE_FLAGS3	w ACE riag mapping: 1x40021450) 1x40021454) 1x40021458) 1x40021455)	Bit 0 ADCDirect 1 <none> 2 <none> 3 <none></none></none></none>	_SFFLAGS register: Source nput_0:UNDER1V	ACE Interrupt 55 55 56 57	Cortex-M3 Interrupt 118 119 120 121

Figure 1-3 • Flag Mapping

The Flag mapping tells us that

- OVER1V was mapped to PPE_FLAGS0 register, bit 0
- OVER2V was mapped to PPE_FLAGS0 register, bit 1
- UNDER1V was mapped to PPE_SFFLAGS0 register, bit 0

Our MSS design should look like Figure 1-4 after configuration:

Figure 1-4 • Sample MSS Design After Configuration

Generate the MSS - Create a Top Level SmartDesign Wrapper

Create a top level SmartDesign component and instantiate our newly configured MSS component. Set the top level SmartDesign as root, and generate the SmartDesign (as shown in Figure 1-5).

Figure 1-5 • Top-Level SmartDesign on the Canvas

2 – Preparing the Testbench

Now that the design is generated, let's open up two files that we'll need for simulation purposes. Go to the Libero® IDE Project Manager Files tab and open the testbench.v and user.bfm from your MSS component (as shown in Figure 2-1).

Figure 2-1 • Files Tab (File Hierarchy) in the Project Manager

Creating a Custom Testbench

The testbench.v file that is automatically generated by SmartDesign is useful for basic simulations, but for ACE simulations we will need to customize this basic testbench.

To create a new testbench:

1. From the Libero IDE Project Manager choose File > New.

Select HDL Stimulus File

Name the file ace_testbench and click OK.

2. Copy and paste the contents of testbench.v to ace_testbench. We now have a testbench that we can customize for ACE simulations.

3. Add a simple SmartFusion CAE library analog driver function to drive our analog input service ADCDirectInput. The code fragment in Figure 2-2 should be added to your testbench. A voltage value is ramped up, then down.

Figure 2-2 • Custom Testbench Code Fragment

Notice the drive_analog_input function that is used to convert the real value into a value that can be driven into the analog port. Refer to the "CAE Analog Drivers" on page 13 for more details.

Modifying Our BFM Script

We will create a simple BFM script that just loops and reads our PPE registers. This mimics a Cortex M3 polling scheme. The addresses of the PPE_FLAGSn and PPE_SFFLAGS registers are available in the Actel SmartFusion Microcontroller Subsystem (MSS) User's Guide. It is also shown in the Flags tab in the ACE configurator, in addition to the bit in which the flag is assigned to in the register. In the user.bfm script file, we will add the commands shown in Table 2-1.

Table 2-1 • user.bfm Script File Commands

```
# ACE register offsets
constant PPE_FLAGS0 0x1450;
constant PPE_SFFLAGS 0x1460;
procedure user_main;
# uncomment the following include if you have soft peripherals in the fabric
# that you want to simulate. The subsystem.bfm file contains the memory map
# of the soft peripherals.
# include "subsystem.bfm"
# add your BFM commands below:
int flags0_value;
int sflag_value;
int loop;
set loop 1;
while loop == 1
 readstore w ACE PPE_FLAGS0 flags0_value;
 readstore w ACE PPE_SFFLAGS sflag_value;
endwhile
return
```

In this script, we continually read the PPE_FLAGS0 and PPE_SFFLAGS register addresses into 2 data variables. If we wanted to create a more complex scenario, we could take those values and write them to GPIOs or perform other actions in our BFM commands based upon their value.

Associating our Custom Testbench with our Design

We need to tell the Libero IDE to use our custom testbench for simulation instead of the system generated one.

- 1. Right-click the SDTOP component in the Project Manager Design Hierarchy and choose **Organize Stimulus**.
- 2. We want to use ace_testbench instead of testbench.v. So select testbench.v from the right panel and click **Remove**. Then select ace_testbench.v from the left panel and click **Add** (Figure 2-3).
- 3. Click OK

Use the Remove button to rem Use the Up/Down arrow buttor The top level module should ap	ove associated is to specify the ipear last in the	files. compilation order list box.	for the simulator.	
Stimulus files in the project: testbench.v ace_testbench.v	Origin MSS User	<u>A</u> dd → ← <u>R</u> emove	Associated files: testbench.v	Ţ Origin SDTOP

Figure 2-3 • Organize Stimulus Dialog Box

Simulate

Now we are ready to simulate.

In the Project Manager Project Flow window click the ModelSim button.

In ModelSim's command window type **run 3ms**. In our example, we are running for 3ms because we have a long hardcoded delay in our testbench, because we want to ensure that the ADC calibration is completed before we begin processing.

3 – CAE Analog Drivers

Analog ports are represented by a 1-bit wide port in both the Verilog and VHDL simulation models. Driver modules are developed to drive a real value through a 1-bit port and to read an analog value from a 1-bit port.

The *drive* module/function serializes and streams the real value represented in floating point representation (64-bit value) in zero simulation time, using delta delays. The *read* module deserializes a stream into a 64-bit value.

Interfaces of all the drivers are given later in respective testbenches

- *drive_analog_io* and *drive_analog_input* can drive an analog input. Input is provided to this module as 64 bit value.
- *read_analog_io* can read any analog signal coming from the Analog Block. Output is provided as a 64 bit value.
- *drive_temperature_monitor* is used to drive the temperature pad. This module takes temperature in Celsius and converts it into a voltage and drives it over the digital input.
- *drive_current_monitor* or *drive_current_inputs* can be used to drive the current pad that will be used for Current Monitoring. As an input it takes the voltage at AT pad, the resistor and current values, to calculate the voltage on the AC quad.
 - Equation is AC(V) = AT(V) + Resistor * current
 - Interface information of both the drivers is given below

Connecting Analog Ports with Verilog

Use \$realtobits function to convert the real value to 64 bit value or \$bitstoreal function can be used to convert the data from 64 bit to real value.

Table 3-1 shows the analog drivers that are available in Verilog.

Table 3-1 • Verilog Drivers

```
module drive_analog_io ( parallel_in, serial_out );
 input [63:0] parallel_in;
 output
                serial_out;
endmodule
module drive_analog_input ( parallel_in, serial_out );
input [63:0] parallel_in;
output
                serial_out;
endmodule
module drive_current_monitor ( temp_vect, resistor_vect, current_vect, serial_out );
 input [63:0] temp_vect;
input [63:0] resistor_vect;
 input [63:0] current_vect;
output
               serial_out;
endmodule
module drive_current_inputs ( current_vect, resistor_vect, temp_vect, ac, at );
input [63:0] temp_vect;
input [63:0] resistor_vect;
input [63:0] current_vect;
output
                ac;
 output
                at;
endmodule
module drive_temperature_quad ( temp_celsius, serial_out );
 input [63:0] temp_celsius;
               serial_out;
output
endmodule
module read_analog_io ( serial_in, read_enb, parallel_out );
                serial_in;
 input
input
                read_enb;
output reg [63:0] parallel_out;
endmodule
```


Table 3-2 demonstrates all the relevant drivers.

Table 3-2 • Driver Examples

```
module example_tb ();
real varef_real;
real av0_in = 1.0;
real at0_in = 20.0;
real ac1_in = 1.0;
real res1_in = 0.1;
real at1_in = 0.5;
real ac2_in = 1.0;
real res2_in = 0.1;
real at2_in = 0.5;
wire av0, at0, ac1, at1, ac2, at2;
wire [63:0] varef_bits;
//drive voltage input
drive_analog_input inst0 ($realtobits(av0_in), av0);
//Read analog output
read_analog_input instl(varefout, varef_bits);
always @(varef_bits)
   varef_real = $bitstoreal(varef_bits);
//Drive temperature quad where at0_in is in OC
drive_temperature_quad inst2($realtobits(at0_in), at0);
//Drive current monitor. acl_in is current in A. resl_in is resistance value
//in ohms and at1_in is voltage at at1 pad.
drive_current_monitor inst3 ($realtobits(at1_in), $realtobits(res1_in), $realtobits(ac1_in),
ac1);
drive_analog_input inst0 ($realtobits(at1_in), at1);
//Drive current inputs. ac2_in is current in A. res2_in is resistance value
//in ohms and at2_in is voltage at at1 pad.
drive_current_inputs inst4 ($realtobits(ac2_in), $realtobits(res2_in), $realtobits(at2_in),
ac2, at2);
endmodule
```

Connecting Analog Ports with VHDL

realtobits function (equivalent to \$realtobits system task in verilog) and bitstoreal function (equivalent to \$bitstoreal in verilog) are available in float_pkg package present in smartfusion library. Notice that this package is added to the testbench at the beginning. realtobits can be used to convert the real value to 64 bit floating point representation. bitstoreal function is available in float_pkg package to convert this 64 bit value to a real value.


```
The example below illustrates the drivers.
library smartfusion;
use smartfusion.float_pkg.all;
entity example_tb is
end example_tb;
architecture tb_arch of example_tb is
begin -- tb_arch
signal av0_in : real := 0.0;
                                       -- voltage value
signal varef_real : real;
signal varef_bits : std_logic_vector(63 downto 0);
signal at0_in : real := 0.0;
                                      -- temparature in celsius
signal ac1_in : real := 0.0;
                                       -- current value
signal res1_in : real := 0.0;
                                        -- resistor value
signal at1_in : real := 0.0;
                                      -- voltage at temparature pad
signal ac2_in : real := 0.0;
                                      -- current value
signal res2_in : real := 0.0;
                                        -- resistor value
signal at2_in : real := 0.0;
                                      -- voltage at temparature pad
signal av0 : std_logic;
signal at0 : std_logic;
signal ac1 : std_logic;
signal at1 : std_logic;
signal ac2 : std_logic;
signal at2 : std_logic;
component drive_analog_input
  port(
    -- Inputs
    parallel_in : in std_logic_vector(63 downto 0);
    -- Outputs
    serial_out : out std_logic
    );
end component;
component read_analog_io
  port(serial_in : in std_logic;
       Parallel_out : out std_logic_vector(63 downto 0));
end component;
component drive_temparature_quad
  port (
    temp_celsius :
                     in std_logic_vector(63 downto 0);
```



```
: out std_logic);
    serial_out
end component;
component drive_current_monitor
  port (
    temp_vect : in std_logic_vector(63 downto 0);
    resistor_vect : in std_logic_vector(63 downto 0);
    current_vect : in std_logic_vector(63 downto 0);
    serial_out : out std_logic);
end component;
component drive_current_inputs
  port (
    current_vect : in std_logic_vector(63 downto 0);
    resistor_vect : in std_logic_vector(63 downto 0);
    temp_vect : in std_logic_vector(63 downto 0);
    ac : out std_logic;
    at : out std_logic);
end component;
begin
--drive voltage input
u_drv_av0 : drive_analog_input
port map (parallel_in => realtobits(av0_in),
               serial_out => av0);
--Read analog output
u_read_varef : read_analog_ip
  port map (
    serial_in
              => varefout,
    parallel_out => varef_bits);
varef_real <= bitstoreal(varef_bits);</pre>
-- Drive temperature quad where at0_in is in OC
u_drv_at0 : drive_temparature_quad
```

--Drive current monitor. acl_in is current in A. resl_in is resistance value, --in ohms and atl_in is voltage at atl pad. u_drv_acl : drive_current_monitor

```
port map (
   temp_vect => realtobits(at1_in),
```



```
--Drive current inputs. ac2_in is current in A. res2_in is resistance value --in ohms and at2_in is voltage at "at"
```

```
u_drv_ac2 : drive_current_inputs
    port map (
```

```
temp_vect => realtobits(at2_in),
res_vect => realtobits(res2_in),
current_vect => realtobits(ac2_in),
ac => ac2,
at => at2);
```

end tb_arch;

A – Product Support

The Microsemi SoC Products Group backs its products with various support services including a Customer Technical Support Center and Non-Technical Customer Service. This appendix contains information about contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center

Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Microsemi customers can receive technical support on Microsemi SoC products by calling Technical Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.800.262.1060

Phone (International): +1 650.318.4460

Email: soc_tech@microsemi.com

ITAR Technical Support

Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also have the option to interactively submit and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.888.988.ITAR

Phone (International): +1 650.318.4900

Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

Microsemi's customer service representatives are available Monday through Friday, from 8 AM to 5 PM Pacific Time, to answer non-technical questions.

Phone: +1 650.318.2470

Microsemi Corporation (NASDAQ: MSCC) offers the industry's most comprehensive portfolio of semiconductor technology. Committed to solving the most critical system challenges, Microsemi's products include high-performance, high-reliability analog and RF devices, mixed signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi serves leading system manufacturers around the world in the defense, security, aerospace, enterprise, commercial, and industrial markets. Learn more at **www.microsemi.com**.

Corporate Headquarters Microsemi Corporation 2381 Morse Avenue Irvine, CA 92614-6233 USA Phone 949-221-7100 Fax 949-756-0308

SoC Products Group 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 www.actel.com SoC Products Group (Europe) River Court, Meadows Business Park Station Approach, Blackwatery Camberley Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540 SoC Products Group (Japan) EXOS Ebisu Building 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 SoC Products Group (Hong Kong) Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong Phone +852 2185 6460 Fax +852 2185 6488

© 2010 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.