SmartDesign MSS
ACE Simulation

& Microsemi



& Microsemi

Libero® IDE Software

Table of Contents

INtrOdUCTION . . o o 3
1 Creating the DeSigN . . . ..ot e e 5
Configuring the M S S . . . o 5
Generate the MSS - Create a Top Level SmartDesign Wrapper . . .. ..o v ittt e e e e 7
2 Preparing the Testbench . ... ... 9
Creating @ Custom TesStheNCh . . . .. . e 9
Modifying Our BEM SCHIPt . . . ..o e 11
Associating our Custom Testbench with our Design . . . ... ... e 12
SIMUIALE . . . 12
3 CAE ANalog DriVerS . . .o 13
Connecting Analog Ports With VErilog . . ... ..o 13
Connecting Analog Ports With VHDLL . . . ... o e e e e 15
A PrOdUCE SUPPOI . o 19
Contacting the Customer Technical Support Center . .. .. ... ... e e 19
Non-Technical CUSIOMEr SEIVICE . . .. . ..t e e e 19

Revision 2 2



& Microsemi

Introduction

The ACE functionality can be simulated in ModelSim™ to verify that your configuration works based on
your system input.

This document walks through a simple example of simulating the ACE. Please refer to Simulating the
Microcontroller Subsystem for a more general overview of the simulation strategy for SmartFusion MSS.

Details about the analog driver functions that are available in the SmartFusion library are at the end of
this document in the Analog Drivers section.

Revision 2 3


../MSS/mss_sim_ug_1.pdf
../MSS/mss_sim_ug_1.pdf




& Microsemi

1 — Creating the Design

We will create a simple SmartFusion MSS and ACE configuration to demonstrate how you can simulate
the ACE.

Configuring the MSS

We'll disable the following peripherals since we will not be using them in this example:

* UARTs
e SPIs
e 12Cs
« MAC

e Fabric Interface
« External Memory Controller

We'll create a simple ACE configuration consisting of a single ADC Direct Input service with a few flags,
and a simple sampling sequence loop. The configuration is shown in Figure 1-1 and Figure 1-2.

Configure ADC Direct Input [ %]
ADCO Signal name:

P
i

I EEC e [ send raw ADC result to DMA
Acquisition ime: I 10,000 us

—Digital filkering ™ Linear transformation

Filketing Factor: INone - l Scale Factor: I
Initial walue: I 0,000 W, Offset: I

| send filtered|result ba DA ™| Send transfarmed result bo D

Threshold Detection Pl Xl

Threshold | Hysteresiz| Assert De-aszert ﬂ
Flag Name Flag Type [m¥Y) Samples Samples
OVERTY OVER 1 100
OVER2Y OvER 2 a a a
UNDERTY UNDER 1 a 5 q
874 I Cancel |

Figure 1-1 « ADC Direct Input and Threshold Configuration

Revision 2 5



& Microsemi

Configure ACE Controller | Flags I

Procedures :EI E_’I ﬁl

N
= 1 apcBlockn
ADCT_MAIN [] ADCElock1

Operating sequence entry:  © Auko ' Manual
Details of procedure: ADCO_MAIR
Available signals: Sampling rate

Actual Rate|
ksps

- |
= | ADCDirectinput_0 0.000
e
]
< I

Signal

Total sampling rate: 0,000 ksps
Calculate Actual Rate

Operating sequence ‘_: E_’I ﬁl il il

Instruction

Sample ADCDirectnput_0
Fiestarts the execution sequence for this timeslot

Figure 1-2 « Sampling Sequence Configuration

We use the Flags tab to determine which Flag register and bits our flags were mapped to. This is useful
when we write our BFM script later (as shown in Figure 1-3).

Configure ACE I Contraller Flags |
Select a register to view ACE flag mapping: Available bits of PPE_FLAGSO register:
- Fabric Bit Source ACE Cortex-M3 | =
(1 Flag Reqisters Interrupt Interrupt
PPE_FL 0} 0] ADCDirect nput_0:0WERTY 54 118
FPE_FLAGS1 ( 0x40021454 ) 1] ADCDirectinput_0:0VERZY 5E 119
PPE_FLAGSZ ( 040021458 ) 2heieg o e
PPE_FLAGS3 { 0x4002145¢ ) i :mnei ;g 1312
(e
i PPE_SFFLAGS { 0x40021460 ) Tl nones £5 173
Configure ACE I Contraller Flags
Select a register to view ACE flag mapping: Available bits of PPE_SFFLAGS register:
[#1- Fabric Bit o - ACE Cortex-M3 | =
[=- Flag Reqisters Interrupt Interrupt
o PPE_FLAGSO { Ox40021450 ) 0] ADCDirectinput_0:INDERTY 54 118
PPE_FLAGS1 { Dx40021454 ) 1] <none> 55 13
PPE_FLAGSZ ( 040021458 ) g D ;g 1310
<none>
PPE_FLAGSS { 0x4002145
= L0 <) 4] <nane> ] 122
5| <nones 5 123

Figure 1-3 « Flag Mapping

The Flag mapping tells us that
¢ OVER1V was mapped to PPE_FLAGSO register, bit 0
¢ OVER2V was mapped to PPE_FLAGSO register, bit 1
« UNDER1V was mapped to PPE_SFFLAGSO register, bit 0

6 Revision 2



& Microsemi

Our MSS design should look like Figure 1-4 after configuration:

MICROCONTROLLER SUBSYSTEM |

ESRAM

Clock M: t CortexM3
ENYM Esternal Memory Controller
| A WT
O

al I
I AHB Bus Makrix I I I
| J
I APE_D APE_1
ACE UART O UART 1
R o
WAAEFD RED

0 0

SPI 0 SPI_1
TIMERx2

_____

WATCHDOG

N E |
MAL
Reset M
RMILPHCMGUT_PAD
i

MES_RESET_A B MEZ_R ESET_N RMI_DATR_PAD:

PADE Q)

-
&}
=]
i
O Ol
k4
i
=
i
0 % .

gg

s
5
# O

ETC

lnlerrufl Manafemenl ._.l:l

Hardwars Canfigutbn

MSS I/O Fabric Interface

Aemuware Configuratian

Figure 1-4 « Sample MSS Design After Configuration

Generate the MSS - Create a Top Level SmartDesign Wrapper

Create a top level SmartDesign component and instantiate our newly configured MSS component. Set
the top level SmartDesign as root, and generate the SmartDesign (as shown in Figure 1-5).

MSSTOF_D
MSS RESET N MSS RESET N
ADCDOirectinput 0 ADCDOirectinput 0 o
YVAREFD YAREFD
IR
ace_sim_ T

Figure 1-5 « Top-Level SmartDesign on the Canvas

Revision 2 7






& Microsemi

2 — Preparing the Testbench

Now that the design is generated, let's open up two files that we'll need for simulation purposes.

Go to the Libero® IDE Project Manager Files tab and open the testbench.v and user.bfm from your MSS
component (as shown in Figure 2-1).

(o Project Manager - E:\DEMOMACE_SIMU
Project File Edit View Tools Window F

RS@ D@ vl o

Design Explorer

- Components
= Common HDL Source Files
B mss_comps.v
= SDTOP
+ HDL Source Files
+ - Stimulus Files
+ - Constraint Files
= 18] MssToP
+  HDL Source Files
= Simulation Files
B testbfm
B user.bfm
= Stimulus Files
B testbench.yv
= Constraint Files
MSSTOP.pde
= Other Files
MSS_ENVM_0.efc
=) User Files
Block Symbal Files

EHieraﬂ:hy @Filﬂ |

Figure 2-1 « Files Tab (File Hierarchy) in the Project Manager

Creating a Custom Testbench

The testbench.v file that is automatically generated by SmartDesign is useful for basic simulations, but
for ACE simulations we will need to customize this basic testbench.

To create a new testbench:
1. From the Libero IDE Project Manager choose File > New.
Select HDL Stimulus File
Name the file ace_testbench and click OK.

2. Copy and paste the contents of testbench.v to ace_testbench. We now have a testbench that we
can customize for ACE simulations.

Revision 2 9



& Microsemi

3. Add a simple SmartFusion CAE library analog driver function to drive our analog input service
ADCDirectlnput. The code fragment in Figure 2-2 should be added to your testbench. A voltage
value is ramped up, then down.

initial
Ibegin
repeat ( ) & (posedge SYSCLK) ;

// increase the voltage

for( i=0; i<Z0; i=i+l)

begin
directinput0_voltage = directinputl_voltage + volt increment;
repeat ( ) @ ({posedge SYSCLK)

end

// decrease the voltage
for( i=30; i<0l; i=i=1l)
begin
directinputl voltage = directinputl voltage - volt increment;
repeat ( ) @ {(posedge SYSCLK) ;
end
" end

/ analog driver function

drive analog input u directinputl drv ( Srealtobits(directinput0 voltage), directinput0 in ):

Figure 2-2 « Custom Testbench Code Fragment

Notice the drive_analog_input function that is used to convert the real value into a value that can be
driven into the analog port. Refer to the "CAE Analog Drivers" on page 13 for more details.

10 Revision 2



& Microsemi

Modifying Our BFM Script

We will create a simple BFM script that just loops and reads our PPE registers. This mimics a Cortex M3
polling scheme. The addresses of the PPE_FLAGSn and PPE_SFFLAGS registers are available in the
Actel SmartFusion Microcontroller Subsystem (MSS) User’s Guide. It is also shown in the Flags tab in
the ACE configurator, in addition to the bit in which the flag is assigned to in the register.

In the user.bfm script file, we will add the commands shown in Table 2-1.

Table 2-1 « user.bfm Script File Commands

# ACE register offsets
constant PPE_FLAGSO 0x1450;
constant PPE_SFFLAGS 0x1460;

procedure user_main;

# uncomment the following include if you have soft peripherals in the fabric
# that you want to simulate. The subsystem.bfm file contains the memory map
# of the soft peripherals.
# include "subsystem_bfm"

# add your BFM commands below:
int flagsO_value;

int sflag_value;

int loop;

set loop 1;

while loop == 1
readstore w ACE PPE_FLAGSO TflagsO _value;
readstore w ACE PPE_SFFLAGS sflag_value;

endwhile

return

In this script, we continually read the PPE_FLAGSO0 and PPE_SFFLAGS register addresses into 2 data
variables. If we wanted to create a more complex scenario, we could take those values and write them to
GPIOs or perform other actions in our BFM commands based upon their value.

Revision 2 11


http://www.actel.com/products/smartfusion/docs.aspx

& Microsemi

Associating our Custom Testbench with our Design

We need to tell the Libero IDE to use our custom testbench for simulation instead of the system
generated one.

1. Right-click the SDTOP component in the Project Manager Design Hierarchy and choose
Organize Stimulus.

2. We want to use ace_testbench instead of testbench.v. So select testbench.v from the right panel
and click Remove. Then select ace_testbench.v from the left panel and click Add (Figure 2-3).

3. Click OK

Organize Stimulus g|

Click to select a stimulus file in the project, and use the Add button to associate the file.
Usze the Remave button to remove associated files.

Uze the Up/Down arrow buttons to specify the compilation order for the simulator,

The top level module should appear last in the list box.

2]+

Stimulus files in the project: | Origin | Azsociated files: | Origin |
testhench.y MS5... testbench.y SDTOP
ace_testhench.v Uszer

Add =+

4= Remove

Help QK | Cancel

Figure 2-3 « Organize Stimulus Dialog Box

Simulate

Now we are ready to simulate.
In the Project Manager Project Flow window click the ModelSim button.

In ModelSim's command window type run 3ms. In our example, we are running for 3ms because we
have a long hardcoded delay in our testbench, because we want to ensure that the ADC calibration is
completed before we begin processing.

12 Revision 2



& Microsemi
3 — CAE Analog Drivers

Analog ports are represented by a 1-bit wide port in both the Verilog and VHDL simulation models. Driver
modules are developed to drive a real value through a 1-bit port and to read an analog value from a 1-bit
port.

The drive module/function serializes and streams the real value represented in floating point
representation (64-bit value) in zero simulation time, using delta delays. The read module deserializes a
stream into a 64-bit value.

Interfaces of all the drivers are given later in respective testbenches

« drive_analog_io and drive_analog_input can drive an analog input. Input is provided to this
module as 64 bit value.

* read_analog_io can read any analog signal coming from the Analog Block. Output is provided as
a 64 bit value.

« drive_temperature_monitor is used to drive the temperature pad. This module takes temperature
in Celsius and converts it into a voltage and drives it over the digital input.

e drive_current_monitor or drive_current_inputs can be used to drive the current pad that will be
used for Current Monitoring. As an input it takes the voltage at AT pad, the resistor and current
values, to calculate the voltage on the AC quad.

— Equation is AC(V) = AT(V) + Resistor * current
— Interface information of both the drivers is given below

Connecting Analog Ports with Verilog

Use $realtobits function to convert the real value to 64 bit value or $bitstoreal function can be used to
convert the data from 64 bit to real value.

Revision 2 13



& Microsemi

Table 3-1 shows the analog drivers that are available in Verilog.

Table 3-1 « Verilog Drivers

module drive_analog_io ( parallel_in, serial_out );
input [63:0] parallel_in;
output serial_out;

endmodule

module drive_analog_input ( parallel_in, serial_out );
input [63:0] parallel_in;
output serial_out;

endmodule

module drive_current_monitor ( temp_vect, resistor_vect, current_vect, serial_out );
input [63:0] temp_vect;
input [63:0] resistor_vect;
input [63:0] current_vect;
output serial_out;

endmodule

module drive_current_inputs ( current_vect, resistor_vect, temp vect, ac, at );
input [63:0] temp_vect;
input [63:0] resistor_vect;

input [63:0] current_vect;

output ac;
output at;
endmodule

module drive_temperature_quad ( temp_celsius, serial_out );
input [63:0] temp_celsius;
output serial_out;

endmodule

module read_analog_io ( serial_in, read_enb, parallel_out );
input serial_in;
input read_enb;
output reg [63:0] parallel_out;

endmodule

14 Revision 2



& Microsemi

Table 3-2 demonstrates all the relevant drivers.

Table 3-2 « Driver Examples

module example_tb ;

real varef_real;
real avO_in = 1.0;
real atO_in = 20.0;
real acl_in = 1.0;
real resl_in = 0.1;
real atl_in = 0.5;
real ac2_in = 1.0;
real res2_in = 0.1;
real at2_in = 0.5;

wire av0, atO, acl, atl, ac2, at2;

wire [63:0] varef bits;

//drive voltage input
drive_analog_input inst0 ($realtobits(avO_in), av0);

//Read analog output
read_analog_input instl(varefout, varef _bits);
always @(varef_bits)

varef_real = $bitstoreal (varef_bits);

//Drive temperature quad where atO_in is in OC

drive_temperature_quad inst2($realtobits(atO_in), at0);

//Drive current monitor. acl_in is current in A. resl_in is resistance value
//in ohms and atl_in is voltage at atl pad.

drive_current_monitor inst3 ($realtobits(atl_in), $realtobits(resl_in), $realtobits(acl_in),
acl);

drive_analog_input inst0 ($realtobits(atl_in), atl);

//Drive current inputs. ac2_in is current in A. res2_in is resistance value
//in ohms and at2_in is voltage at atl pad.

drive_current_inputs inst4 ($realtobits(ac2_in), $realtobits(res2_in), $realtobits(at2_in),
ac2, at2);

endmodule

Connecting Analog Ports with VHDL

realtobits function (equivalent to $realtobits system task in verilog) and bitstoreal function (equivalent to
$hitstoreal in verilog ) are available in float_pkg package present in smartfusion library. Notice that this
package is added to the testbench at the beginning. realtobits can be used to convert the real value to 64
bit floating point representation. bitstoreal function is available in float_pkg package to convert this 64 bit
value to a real value.

Revision 2 15



& Microsemi

The example below illustrates the drivers.
library smartfusion;

use smartfusion.float_pkg.all;

entity example_tb is

end example_tb;

architecture tb_arch of example_tb is

begin -- tb_arch

signal avO_in : real = 0.0; -- voltage value

signal varef_real : real;

signal varef _bits : std_logic_vector(63 downto 0);

signal atO_in : real = 0.0; -- temparature in celsius
signal acl_in : real := 0.0; -- current value

signal resl_in : real := 0.0; -- resistor value

signal atl_in : real = 0.0; -- voltage at temparature pad
signal ac2_in : real := 0.0; -- current value

signal res2_in : real := 0.0; -- resistor value

signal at2_in : real = 0.0; -- voltage at temparature pad

signal avO0 : std_logic;
signal at0 : std_logic;
signal acl : std_logic;
signal atl : std_logic;
signal ac2 : std_logic;

signal at2 : std_logic;

component drive_analog_input
port(
-- Inputs
parallel_in : in std_logic_vector(63 downto 0);
-- Outputs
serial_out : out std_logic
):

end component;

component read_analog_io
port(serial_in : in std_logic;
Parallel_out : out std_logic_vector(63 downto 0));

end component;

component drive_temparature_quad
port (
temp_celsius : in std_logic_vector(63 downto 0);

16 Revision 2



serial_out : out std_logic);

end component;

component drive_current_monitor

port (
temp_vect : in std_logic_vector(63 downto 0);
resistor_vect : in std_logic_vector(63 downto 0);
current_vect : in std_logic_vector(63 downto 0);

serial_out : out std_logic);

end component;

component drive_current_inputs

port (
current_vect : in std_logic_vector(63 downto 0);
resistor_vect : in std_logic_vector(63 downto 0);
temp_vect : in std_logic_vector(63 downto 0);

ac : out std_logic;
at : out std_logic);
end component;

begin

--drive voltage input
u_drv_avO : drive_analog_input
port map (parallel_in => realtobits(avO_in),

serial_out => av0);

--Read analog output
u_read_varef : read_analog_ip
port map (
serial_in => varefout,

parallel_out => varef _bits);

varef_real <= bitstoreal(varef _bits);

-- Drive temperature quad where atO_in is in 0OC
u_drv_atO : drive_temparature_quad
port map (
temp_celsius => realtobits(atO_in),

serial_out => at0);

& Microsemi

--Drive current monitor. acl_in is current in A. resl_in is resistance value, --in ohms

and atl_in is voltage at atl pad.
u_drv_acl : drive_current_monitor
port map (

temp_vect => realtobits(atl_in),

Revision 2

17



& Microsemi

res_vect => realtobits(resl_in),
current_vect => realtobits(acl_in),
serial_out => acl);

u_drv_atl : drive_analog_input

port map (parallel_in => realtobits(atl_in),

serial_out => atl);

--Drive current inputs. ac2_in is current in A. res2_in is resistance value --in ohms
and at2_in is voltage at "at"

u_drv_ac2 : drive_current_inputs
port map (
temp_vect => realtobits(at2_in),
res_vect => realtobits(res2_in),
current_vect => realtobits(ac2_in),
ac => ac2,
at => at2);

end tb_arch;

18 Revision 2



& Microsemi

A — Product Support

The Microsemi SoC Products Group backs its products with various support services including a
Customer Technical Support Center and Non-Technical Customer Service. This appendix contains
information about contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center

Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center spends
a great deal of time creating application notes and answers to FAQs. So, before you contact us, please
visit our online resources. It is very likely we have already answered your questions.

Technical Support

Microsemi customers can receive technical support on Microsemi SoC products by calling Technical
Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit
and track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.800.262.1060
Phone (International): +1 650.318.4460
Email: soc_tech@microsemi.com

ITAR Technical Support

Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR
Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also
have the option to interactively submit and track cases online at My Cases or submit questions through
email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.888.988.ITAR
Phone (International): +1 650.318.4900
Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

Microsemi’s customer service representatives are available Monday through Friday, from 8 AM to 5 PM
Pacific Time, to answer non-technical questions.

Phone: +1 650.318.2470

Revision 2 19



 Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of semiconductor technology.
Committed to solving the most critical system challenges, Microsemi’s products include high-performance, high-reliability analog
and RF devices, mixed signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi serves
leading system manufacturers around the world in the defense, security, aerospace, enterprise, commercial, and industrial
markets. Learn more at www.microsemi.com.

Corporate Headquarters  SoC Products Group

Microsemi Corporation 2061 Stierlin Court
2381 Morse Avenue Mountain View, CA
Irvine, CA 94043-4655
92614-6233 USA

USA Phone 650.318.4200
Phone 949-221-7100 Fax 650.318.4600
Fax 949-756-0308 www.actel.com

SoC Products Group (Europe) SoC Products Group (Japan)
River Court, Meadows Business Park EXOS Ebisu Building 4F
Station Approach, Blackwatery 1-24-14 Ebisu Shibuya-ku
Camberley Surrey GU17 9AB Tokyo 150 Japan

United Kingdom Phone +81.03.3445.7671
Phone +44 (0) 1276 609 300 Fax +81.03.3445.7668

Fax +44 (0) 1276 607 540

SoC Products Group (Hong Kong)
Room 2107, China Resources Building
26 Harbour Road

Wanchai, Hong Kong

Phone +852 2185 6460

Fax +852 2185 6488

© 2010 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks

are the property of their respective owners.

5-02-00220-1/01.11


http://www.actel.com
http://www.microsemi.com

	Introduction
	1 – Creating the Design
	Configuring the MSS
	Generate the MSS - Create a Top Level SmartDesign Wrapper

	2 – Preparing the Testbench
	Creating a Custom Testbench
	Modifying Our BFM Script
	Associating our Custom Testbench with our Design
	Simulate

	3 – CAE Analog Drivers
	Connecting Analog Ports with Verilog
	Connecting Analog Ports with VHDL

	A – Product Support
	Contacting the Customer Technical Support Center
	Technical Support
	ITAR Technical Support

	Non-Technical Customer Service


