MICROCHIP Libero® SoC v2022.3
PolarFire® SoC MSS Simulation User Guide

Introduction

The PolarFire® SoC Microcontroller Subsystem (MSS) is modeled with Microchip AMBA Bus Functional Model (BFM)
to support functional simulation.

Important:

1. For information on the supported instructions and the BFM commands syntax, see DirectCore
Advanced Microcontroller Bus Architecture - Bus Functional Model User's Guide.
The MSS BFM based simulation model provides a simulation environment for the PolarFire SoC
FPGA fabric logic by replacing the MSS system block in a design. Simulation can be useful in the
following applications:

— Verifying the connectivity with the FPGA fabric logic.

— Addressing peripherals, memories, and so on in the FPGA fabric that are connected to the
MSS using the Fabric Interface Controllers (FICs).

— Accessing MSS-DDR from the FPGA fabric initiator using FICs.

— Accessing the Crypto from the FPGA fabric through AHB and streaming interface.
— Generation of H2F and F2H interrupts.

— Accessing MSS-CPU’s L2-LIM from the FPGA fabric initiator using FICs.

2. PolarFire SoC MSS simulation model does not support simulation of any of the Peripherals, MSS
CPU Core or Core Complex, DDR-RTL Simulation, Cached DDR, MPU, eNVM, and SCB bus.

3. Older versions of this documentation, uses the terms Master and Slave. The equivalent Microchip
terminology used in this document is Initiator and Target respectively.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 1
and its subsidiaries

http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf
http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf

Libero® SoC v2022.3

The following figure shows the MSS Simulation Model Architecture:

Figure 1. MSS Simulation Model Architecture

N eietuiethshutebutiuiuiei :
AX14 (64 [v AXIA (B4
M3 | (64) 1 BFM Target |« i sl
L]]
H :
H ¢' :
BFM Target AX14 (64) H H2F Interrupt H
i <3 58 E o clear E
Memory L S '
FoTeTeTmemememceoocseseseeceoeocoeoe
AXI4 (64 ' v AXNIG (64
M1 e Lall R 1 BFM Target |« 1 (©3)
: :
' ¢ ¥
" L]
AXi ; :
Switch H PAXIA (64
witcl : H2F Interrupt BEM Initiator : (64) >
R clear H
W fig_0 .
Atk '
AXl4 (64) ' OAXIS (B4
M2 | y - : BFM Target |« ' Sl o
L] ——
! ¥ : S
: ' oaxiaea) | £
AXl4 (64) W '
QoS AXI Initiator v 2 IR + H2F :::::mm BFM Initiator ; v B S
L]
feeemescscccscsccescscscscscccscscncscaas » AHBL (32}, | Y=
7 AXl4 (64) : H >
H H
H L]
MSS h H AgL32 User V Streaming
" M i
Clock Control H BFM |AHB (32) Crypto 4‘—';!'
(Behavioral) BFM Target E Initiator (PLI) :
+ i H
DDR Controller R) L1
+
DDR memory
(Fast simulation model) ' '- '- F2H Interrupts F2H Interrupts (64)
(prints) <
H2F Interrupts H2F Interrupts tlE';F
(BFM/Behavioral)
fessssssssscccsccesa.
L] 1
H « APB(32)
: BFM Initiator [>
' :
s fic_ !
User BFM
© 2022 Microchip Technology Inc. User Guide DS50003088G-page 2

and its subsidiaries

Libero® SoC v2022.3

Table of Contents

a1 0T [8 o3 1] o RS ER 1
1. Creating a Nnew PolarFire SOC ProjJECt........cocuuii ittt e e 4
2. SIMUIBLION FIOW. ...ttt e e ettt e e e e et e e e e e e s ntaeeeae e e nneeeeaeeaanneeeaaeeaansneeaaeaan 5
bt R o (O 1 (=T o =T USRS 5
N 101 (=Y ¢ (U1 o] £ TR UTPOOOPPRNt 1"
P B U 1T o 0/ o] (o] o] (o171 (SO PSPPSR OUPPTPTPRON 15
D B 1 B 7o) g o 1= OSSR 23
D T O To S TN = = 10 T (= OSSR 30
DA T B IR | Yoot RS ER 31
3. REVISION HiSTOMY ...ttt e et et e e aaaaeeaeaeeeeeeaeaaaaa s nnnnnenennnrnnnes 32
MICrOChIP FPGA SUPPOIT.....ce ettt ettt e bt e et e st e e s e e e aabe e e sneeeeeaneeenaee 33
MicroChip INFOMMAtION.coi it e e e e e e et e e e e e et ae e e e e e eenasaeeaeeannnees 33
The MICroChip WEDSITE. ..o et 33
Product Change Notification SErVICE.coocuiiiiiiiiiie e 33
CUSTOMEBT SUPPOIL. ...ttt e ettt e e e et e e e e e et it e e e e eesabaeeeeesataseeaeeeassssesaeeeanraneeeeaanses 33
Microchip Devices Code Protection Feature.............oouiiiiiiiiiiiiii e 33
[I=To | N o] (o T PSP P PR TPRPPPPRO 34
BT [T 0 0 P-4 G T PP PPPOTTPPPPPROR 34
Quality Management SYSTEM......c...iiiiiiie ittt 35
Worldwide Sales and SEIVICE...........ooii ittt et e e e e ettt e e e e e e nteeeaaeeaanneeeeaeeaannees 36

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 3

and its subsidiaries

Libero® SoC v2022.3

Creating a new PolarFire SoC Project

1. Creating a new PolarFire SoC Project

Use the MSS standalone configurator tool and Libero® SoC to create MSS-based designs. For more information, see
the Standalone MSS Configurator User Guide for PolarFire SoC.

1.

Create the MSS configurator using the pfsoc_mss application by either creating a new configuration (. cfg)
file or by opening an existing one.

2. Configure the MSS subsystem with the required FIC interface and other necessary modules like DDR and
Crypto.
3. Generate the MSS component file (. cxz).
After finishing with the MSS standalone configuration, import the MSS subsystem into Libero, and then design
the entire system, as follows:
1. Open the Libero SoC Design Suite.
2. Create the project.
3. Invoke system builder to create your MSS block.
4. Import the MSS component file.
5. Design your entire system using MSS, AXI4 interconnect, fabric targets, and fabric initiators.
6. After designing the entire system, check the DRC and generate the system.
7. Add supported BFM instructions in the BFM files created in project.
8. Add required test bench to perform simulation.
9. Launch the Pre-Synth simulation.
Figure 1-1. Launching Simulation
- il work
+ E=j_ testbench (testbench.v) [work]
+ E=j_ testbench (User_Test.v) [work]
= NO 'K
+ sd Open HDL File
+ User HDL Sti
[User "™ Check HDL File
Simulate Pre-Synth Design ¥ Open Interactively
Delete Run
Copy File Path
Show Module Parameters
Properties
© 2022 Microchip Technology Inc. User Guide DS50003088G-page 4

and its subsidiaries

https://coredocs.s3.amazonaws.com/Libero/2022_3/pfsoc_mss_configurator_ug.pdf

21

2141

Libero® SoC v2022.3

Simulation Flow

Simulation Flow

FIC Interface

The PolarFire SoC FPGA provides multiple FICs to enable connectivity between user logic in the FPGA fabric and
the MSS. FIC is part of the MSS and acts as a bridge between the MSS and the FPGA fabric. The initiator FIC
interface provides access to the address range listed in the following table.

Table 2-1. FIC Interface Address Ranges

FIC Interface Number of Regions | Start Address End Address _

FICO 0x6000_0000 OX7FFF_FFFF 512 MB
0x20_0000_0000 0x2F_FFFF_FFFF 64 GB

FIC1 2 0xE000_0000 OXFFFF_FFFF 512 MB
0x30_0000_0000 0x3F_FFFF_FFFF 64 GB

FIC3 1 0x4000_0000 OX5FFF_FFFF 512 MB

Note: 64-bit BFM instructions shall not be used in FIC-3 (PFSOC_MSS FIC3).

The initiator FIC allows and initiates the AXI transaction only when addresses entered in the BFM file are within the
dedicated address range. Otherwise, it shows a DRC in the simulation log.

The target FIC responds to AXI initiator in fabric in the following way:

* Uses AXI transaction details to clear interrupts and provides a valid AXI response.

» Provides a transparent connection between the AXI switch and FIC interface to access the DDR controller and
DDR memory.

» Prints a message in the simulation log in case of incorrect addressing for other addresses.

Note: The DLL in the MSS FIC interface is always bypassed in simulation. MSS_FIC_x_DLL_LOCK_MZ2F output is
not driven (always Tri-State) in the simulation model.

BFM Commands
Libero generates BFM files for FIC interfaces as shown in the following table.

Table 2-2. FIC Interface BFM Files

FICO PFSOC_MSS_FICO

FIC1 PFSOC_MSS_FIC1

FIC3 PFSOC_MSS_FIC3

FIC4 PFSOC_MSS_FIC4
Note: PFSOC_MSS_FIC4 BFM is created for only S
devices.

The following figure shows the BFM files that can be accessed from within the simulation folder in the Libero tool.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 5
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Figure 2-1. BFM Files in the Simulation Folder

=[] simulation
FICOM_PFSOC_MSS_FICO_compile_bfm.tcl
FICOM_PFSOC_MSS_FICO_user.bfm
FICOM_PFSOC_MSS_FIC1_compile_bfm.tcl
FICOM_PFSOC_MSS_FIC1_user.bfm
FICOM_PFSOC_MSS_FIC3_compile_bfm.tcl
FICOM_PFSOC_MSS_FIC3_user.bfm
modelsim.ini

modelsim.ini.sav

parameter_incl.v

PFSOC_MSS_FICO.vec
PFSOC_MSS_FIC1.vec
PFSOC_MSS_FIC3.vec

All BFM commands specified in Microchip DirectCore AMBA BFM User's Guide and SmartFusion2 FPGA High
Speed Serial Interface Simulation User Guide can be used to simulate the MSS.

[(0 e s [P 0 [[[[

The following code block shows a typical BFM instructions.

Enter your BFM commands in this file.

memmap resource name base address;

write width resource name byte offset data;
read width resource name byte offset;
readcheck width resource name byte offset data;

SE e HE S S e S o o SR S o e

procedure main;

#FICO 38bit Initiator Address declaration commands with memmap below
memmap FPR BASE ADDR 38bit 0x2060000000;

memmap FPR BASE ADDR 38bit 0 0x20600£0000;

memmap FPR BASE ADDR 38bit 1 Ox20fffffffs8;

#FICO 32bit Initiator Address declaration commands with memmap below
memmap FPR_BASE _ADDR int 0x60000000;

memmap FPR BASE ADDR int 0 0x60003000;

memmap FPR BASE ADDR int 1 0x60080000;

memmap FPR_BASE _ADDR int 2 0x68000000;

#Array creation command below
int array[100];

#Creating table command below

table LEGALISATION 0x0000 0x0000 0x0000 0x0000 \
0x0000 0x0000 Oxffff Oxffff \

Oxffff Oxfffd OxfeOl Oxfff2 \

Oxffff Oxfffd Oxfe05 Oxffff

#Signal declaration command below
int u;

int 1;

#Writing data command below

write64 w FPR BASE ADDR 38bit 1 0x8 0x32323232 Oxaaaaaaaa
#Reading data command below
read64 w FPR BASE ADDR 38bit 1 0x8

#Reading and checking data command below
readcheck64 w FPR BASE ADDR 38bit 1 0x8 0x32323232 Oxaaaaaaaa

#Writing data command below
write64 w FPR BASE ADDR 38bit 0x0 0x10102020 Oxaaaaaaaa

#Writing data command below

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 6
and its subsidiaries

http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/SERDES/sf2_serdes_sim_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/SERDES/sf2_serdes_sim_ug_1.pdf

Libero® SoC v2022.3

Simulation Flow

write w 0x70000000 0x0 0x10102020
#Reading data command below

read w 0x70000000 0xO

#Reading and checking data command below
readcheck w 0x70000000 0x0 0x10102020
#Writing data command below

write h 0x70000000 0x32 Oxdddd

#Reading data command below

read h 0x70000000 0x32

#Reading and checking data command below
readcheck h 0x70000000 0x32 0Oxdddd
#Writing data command below

write b 0x70000000 0x64 Oxee

#Reading data command below

read b 0x70000000 0x64

#Reading and checking data command below
readcheck b 0x70000000 0x64 Oxee

#Writing data command below

write w FPR BASE ADDR int 0x0 0x10102020

#Reading data command below

read w FPR BASE ADDR int 0x0

#Reading and checking data command below

readcheck w FPR BASE ADDR int 0x0 0x10102020

#Reading data and store command below

readstore x FPR_BASE ADDR int 0x0 u

#Reading data and masking command below

readmask x FPR BASE ADDR int 0x0 0x10102020 OxFFFFFFFF

#Writing burst data command below

writemult w FPR BASE ADDR int 0 0x0 OxFFFFFFFF OXEEEEEEEE OxAAAAAAAA 0xBBBBBBBB 0xCCCCCCCC
#Reading burst data command below

readmult w FPR BASE ADDR int 0 0x0 5

#Reading and checking burst data command below

readmultchk w FPR BASE ADDR int 0 0x0 OxFFFFFFFF OxEEEEEEEE OxAAAAAAAA OxBBBBBBBB 0xCCCCCCCC

#masking of poll data command below

pollmask w FPR BASE ADDR int 0x0 0x10102020 OxFFFFFFFF
#position of pollbit command below

pollbit w FPR BASE ADDR int 0x0 5 0x1

#creating poll data command below

poll w FPR BASE ADDR int 0x0 0x10102020

#filling data command below

fill w FPR_BASE ADDR int 0x40 3 0x00000000 0x0
#writing data to table command below

writetable w FPR BASE ADDR int 0x100 LEGALISATION 4
#writing to array command below

writearray w FPR BASE ADDR int 0x120 array([0] 1
#After filling check the data command below
fillcheck w FPR BASE ADDR int 0x40 3 0x00000000 0xO
#reading table of data command below

readtable w FPR BASE ADDR int 0x100 LEGALISATION 4
#reading array command below readarray w FPR BASE ADDR int 0x120 array([0] 1
#ahb cycle command below

ahbcycle w FPR BASE ADDR int 1 0x0 OxBBBBBBBB 0x0
#memory testing command below

memtest FPR_BASE ADDR int 2 0x0 0x4 0x0 0x0 0x2

#Writing data command below

write64 w FPR_BASE ADDR 38bit 0x0 0x10102020 Oxaaaaaaaa
#Reading data command below

read64 w FPR BASE ADDR 38bit 0x0

#Reading and checking data command below

readcheck64 w FPR_BASE ADDR 38bit 0x0 0x10102020 Oxaaaaaaaa
#Reading data and store command below

readstore64 x FPR_BASE ADDR 38bit 0x0 u 1

#Display command below

print "Lower 32bits = $h", 1

print "Upper 32bits = %h", u

#Reading data and masking command below

readmask64 x FPR BASE ADDR 38bit 0x0 0x10102020 Oxaaaaaaaa OxFFFFFFFF O0x0000FFFF

#Reading data and store command below
readstore64 x FPR_BASE ADDR 38bit 0x0 u 1
#Display command below

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 7
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

print "Lower 32bits =
print "Upper 32bits =

#Writing burst data

$h", 1
$h", u

command below

writemult64 w FPR BASE ADDR 38bit 0 0x0 OxFFFFFFFF OxXxEEEEEEEE OxAAAAAAAA OxBBBBBBBB
0xCCCCCCCC 0xDDDDDDDD 0x01010101 0x02020202 0x03030303 0xBADCADOO

#Reading burst data command below

readmult64 w FPR BASE ADDR 38bit 0 0x0 5

#Reading and checking burst data command below

readmultchk64 w FPR BASE ADDR 38bit 0 0x0 OxFFFFFFFF OXEEEEEEEE OxAAAAAAAA (O0xBBBBBBBB
0xCCCCCCCC 0xDDDDDDDD 0x01010101 0x02020202 0x03030303 0xBADCADOO

return

After adding a test bench to the design, you can use these BFM files to perform an MSS simulation by launching the
Pre-Synth simulation.

The following is an example of a simulation log listing the BFM transactions.

T A A

#
#
#

ns

S S S SR S o S o o o S o o o o o o o SR S o o o o o o o oE S o o o o

PFSOC_FIC 0O BFM:
PFSOC FIC 0 BFM:

PFSOC_FIC 0O BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC | 0 BFM:
PFSOC FIC 0 BFM:
PFSOC FIC 0 BFM:

2495 ns

#

ns

#

PFSOC_FIC 0 BFM:

PFSOC_FIC 0 BFM:

2502 ns

SE S HE o e e S o o o 3 o e

PFSOC_FIC 0 BFM:
PFSOC_FIC 0 BFM:
PFSOC_FIC_0_ BFM:
PFSOC_FIC_ 0 BFM:
PFSOC_FIC 0 BFM:
PFSOC_FIC_0_ BFM:
PFSOC_FIC_ 0 BFM:
PFSOC_FIC 0 BFM:
PFSOC_FIC_0_ BFM:
PFSOC_FIC_ 0 BFM:
PFSOC_FIC 0 BFM:
PFSOC_FIC_0_ BFM:
PFSOC_FIC_ 0 BFM:

45:read64 w 00000021 00000000 at 105 ns
47:readcheck64 w 00000021 00000000 32323232 at 2863311530

108

Data Write 2100000000 32323232aaaaaaaa
50:write64 w 00000020 60000000 10102020 aaaaaaaa at 248 ns

Data Read 2100000000 32323232aaaaaaaa at 385.077000ns
53:write w 00000000 70000000 10102020 at 388 ns

Data Read 2100000000 32323232aaaaaaaa MASK:ffffffffffffffff at 525.105000ns
55:read w 00000000 70000000 at 528 ns

Data Write 2060000000 10102020aaaaaaaa
57:readcheck w 00000000 70000000 10102020 at 668 ns

Data Write 70000000 0000000010102020
59:write h 00000000 70000032 0000dddd at 808 ns

Data Read 70000000 1010202010102020 at 945.189000ns
6l:read h 00000000 70000032 at 949 ns

Data Read 70000000 1010202010102020 MASK:00000000ffffffff at 1085.217000ns
63:readcheck h 00000000 70000032 0000dddd at 1089 ns

Data Write 70000032 00000000dddd0000
65:write b 00000000 70000064 000000ee at 1229 ns

Data Read 70000032 xxxxxxxxddddxxxx at 1365.273000ns
67:read b 00000000 70000064 at 1369 ns

Data Read 70000032 dddd MASK:00000000£f£££f0000 at 1505.301000ns
69:readcheck b 00000000 70000064 000000ee at 1509 ns

Data Write 70000064 00000000000000ee
72:write w 00000000 60000000 10102020 at 1649 ns

Data Read 70000064 xxxxxxeexxxxxxxx at 1785.357000ns
74:read w 00000000 60000000 at 1789 ns

Data Read 70000064 ee MASK:000000££00000000 at 1925.385000ns
76:readcheck w 00000000 60000000 10102020 at 1929 ns

Data Write 60000000 0000000010102020
79:readstore x 00000000 60000000 @101 at 2069 ns

Data Read 60000000 1010202010102020 at 2205.441000ns

Data Read 60000000 1010202010102020 MASK:00000000ffffffff at 2345.469000ns
Data Read 60000000 1010202010102020 at 2485.497000ns
81l:readmask x 00000000 60000000 10102020 ffffffff at 2492 ns

(WARNING) writemult 32 bit command on 64 bit AXI bus is not allowed at

(WARNING) readmult 32 bit command on 64 bit AXI bus is not allowed at 2499

(WARNING) readmultchk 32 bit command on 64 bit AXI bus is not allowed at
92:pollmask w 00000000 60000000 10102020 ffffffff at 2506 ns
Data Read 60000000 1010202010102020 MASK:00000000ffffffff at
Data Read 60000000 1010202010102020 MASK:00000000ffffffff at
94:pollbit w 00000000 60000000 5 1 at 2789 ns

Data Read 60000000 1010202010102020 MASK:0000000000000020 at
96:poll w 00000000 60000000 10102020 at 2939 ns

Data Read 60000000 1010202010102020 MASK:00000000ffffffff at
98:fill w 00000000 60000040 3 3 3 at 3089 ns

Data Write 60000040 0000000000000000

100:writetable w 00000000 60000100 7 4 at 3239 ns

Data Write 60000044 0000000000000000

Data Write 60000048 0000000000000000

Data Write 60000100 0000000000000000

2635.
2785.

527000ns
557000ns
2935.587000ns

3085.617000ns

© 2022 Microchip Technology Inc.

and its subsidiaries

User Guide DS50003088G-page 8

Libero® SoC v2022.3

Simulation Flow

PFSOC_FIC_0_BFM: Data Write 60000104 0000000000000000

PFSOC_FIC 0 BFM:102:writearray w 00000000 60000120 1 1 at 3799 ns

PFSOC_FIC_0_BFM: Data Write 60000108 0000000000000000

PFSOC_FIC_0_BFM:104:fillcheck w 00000000 60000040 3 3 0 at 3939 ns

PFSOC_FIC 0 _BFM: Data Write 6000010c 0000000000000000

PFSOC_FIC_0_BFM: Data Write 60000120 00000000xXxXxXXXXXX

PFSOC_FIC_0_BFM: Data Read 60000040 0000000000000000 MASK:00000000ffffffff at 4355.871000ns
PFSOC_FIC 0 BFM:106:readtable w 00000000 60000100 7 4 at 4359 ns

PFSOC_FIC_0_BFM: Data Read 60000044 0000000000000000 MASK:00000000ffffffff at 4495.899000ns
PFSOC_FIC_0_BFM: Data Read 60000048 xxxxxxxx00000000 MASK:00000000ffffffff at 4635.927000ns
PFSOC_FIC 0 BFM: Data Read 60000100 0000000000000000 MASK:00000000ffffffff at 4775.955000ns
PFSOC_FIC_0_BFM: Data Read 60000104 0000000000000000 MASK:00000000ffffffff at 4915.983000ns
PFSOC_FIC_0_BFM:108:readarray w 00000000 60000120 1 1 at 4919 ns

PFSOC_FIC 0 BFM: Data Read 60000108 0000000000000000 MASK:00000000ffffffff at 5056.011000ns
PFSOC_FIC_0_BFM:110:idle w 00000000 60080000 bbbbbbbb bbbbbbbb at 5059 ns

PFSOC_FIC_0_BFM: Data Read 6000010c 0000000000000000 MASK:00000000ffffffff at 5196.039000ns
PFSOC_FIC 0 BFM:112: memtest Started at 5199 ns

PFSOC_FIC_0_BFM: Address 00000000 68000000 Size 4 Cycles 0

PFSOC_FIC_0_BFM: Data Read 60000120 at 5336.067000ns

PFSOC_FIC 0 _BFM: Data Write 60080000 00000000bbbbbbbb

PFSOC_FIC_0_BFM: bfmtest complete Writes 0 Reads 0 Nops 0

PFSOC_FIC_0_BFM:115:write64 w 00000020 60000000 10102020 aaaaaaaa at 5349 ns

PFSOC_FIC 0 BFM:117:read64 w 00000020 60000000 at 5353 ns

PFSOC_FIC_0_BFM:119:readcheck64 w 00000020 60000000 10102020 at 2863311530

n 5356

PFSOC_FIC 0 BFM: Data Write 2060000000 10102020aaaaaaaa

PFSOC_FIC 0 BFM:122:readstore64 x 00000020 60000000 @101 at 5499 ns

PFSOC_FIC_0_BFM: Data Read 2060000000 10102020aaaaaaaa at 5636.127000ns

PFSOC_FIC 0 BFM: Data Read 2060000000 10102020aaaaaaaa MASK:ffffffffffffffff at
5776.155000ns

PFSOC_FIC_0_BFM: Data Read 2060000000 10102020aaaaaaaa at 5916.183000ns

PFSOC_FIC 0 BFM:Lower 32bits = aaaaaaaa

PFSOC_FIC 0 BFM:Upper 32bits = 10102020

PFSOC_FIC_0_ BFM:128:readmask64 x 00000020 60000000 10102020 aaaaaaaa ffffffff 0000ffff at
5923 ns

#
#

PFSOC_FIC 0 BFM:
PFSOC_FIC 0 BFM:

6066.213000ns

131:readstore64 x 00000020 60000000 @101 at 5926 ns

Data Read 2060000000 10102020aaaaaaaa MASK:ffffffff0000ffff at

PFSOC_FIC_0_BFM: Data Read 2060000000 10102020aaaaaaaa at 6206.241000ns

PFSOC_FIC_0_ BFM:Lower 32bits = aaaaaaaa

PFSOC_FIC 0 BFM:Upper 32bits = 10102020

PFSOC_FIC_0_BFM:137:writemultiple64 x 00000020 600f0000 ffffffff at 6213 ns
PFSOC_FIC_0_BFM: Data Write 20600f0000 ffffffffeeeceececee

PFSOC_FIC 0 BFM: Data Write 20600f0008 aaaaaaaabbbbbbbb

PFSOC_FIC_0_BFM: Data Write 20600f0010 ccccccccdddddddd

PFSOC_FIC_0_BFM:139:readmult64 x 00000020 600£0000 10 at 6230 ns

PFSOC_FIC 0 BFM: Data Write 20600£0018 0101010102020202

PFSOC_FIC_0_BFM: Data Write 20600£0020 03030303badcad00

PFSOC_FIC_0_BFM: Data Read 20600f0000 ffffffffeeeceeeee at 6536.307000ns

PFSOC_FIC 0 BFM: Data Read 20600f0008 aaaaaaaabbbbbbbb at 6546.309000ns

PFSOC_FIC_0_BFM: Data Read 20600f0010 ccccccccdddddddd at 6556.311000ns

PFSOC_FIC_0_ BFM:141:readmultchk64 x 00000020 600f0000 ffffffff . at 6560 ns
PFSOC_FIC 0 _BFM: Data Read 20600f0018 0101010102020202 at 6566.313000ns

PFSOC_FIC_0_BFM: Data Read 20600£0020 03030303badcad00 at 6576.315000ns

PFSOC_FIC_0_BFM: Data Read 20600f0000 ffffffffeeceeceecee MASK:ffffffffffffffff at
6716.343000ns

PFSOC_FIC_0_BFM: Data Read 20600f0008 aaaaaaaabbbbbbbb MASK:ffffffffffffffff at
6726.345000ns

PFSOC_FIC 0 BFM: Data Read 20600f0010 ccccccccdddddddd MASK:ffffffffffffffff at
6736.347000ns

PFSOC_FIC_0_BFM:144:return

PFSOC_FIC 0 BFM: Data Read 20600f0018 0101010102020202 MASK:ffffffffffffffff at
6746.349000ns

PFSOC_FIC_0_BFM: Data Read 20600f0020 03030303badcad00 MASK:ffffffffffffffff at

6756.351000ns

T A T A A A A A
#

FIC_0 BFM Simulation Complete - 50 Instructions - NO ERRORS

#

FREFA A R R R

The FIC BFM initiator can also be used to mimic the DMA type burst data transfer between MSS and fabric. With this,
you may want to check the response of fabric RTL by transferring data to/from GEM (IP/Ethernet packet), USB, and
so on.

User Guide DS50003088G-page 9

© 2022 Microchip Technology Inc.
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

When data transfer is from MSS to fabric, source address can be any initiator within the MSS and destination
address must be within the corresponding FIC address range as per Table 2-1. FIC Interface Address Ranges. As
FIC BFM represents all the initiators of MSS to communicate with the fabric, so the source data can be provided
through the vec file. This vec file is read by BFM initiator and it transfers the data to the fabric through AXI write
transactions. The BFM initiator considers the data from vec as AXI data and it is your responsibility to fill the vec file
with proper packets like Ethernet, USB, and so on.

When data transfer is from fabric to MSS, source address should be within the corresponding FIC address range
and the destination can be any address within MSS (Peripherals, memories, and so on). The FIC BFM transfers the
data from fabric to MSS through the AXI read transactions and does not store this read data anywhere within the
FIC/MSS.

The following table lists the BFM commands and sequence that to be used to perform DMA type transfer.
Table 2-3. BFM Commands And Sequence Used To Perform DMA Type Transfer

Commang T ey

setup 0x8 <source address> <destination To set source and destination address of DMA transfer
address>
setup 0xA <data> To set DMA data source, where,
<data> = 0, means data increment by 1 starting from
0x1

<data> = 1, means random data

<data> = 2, means data from vec file

setup 0x9 <DMA Length> <Control> To set DMA start and control, where,
set Control bit-0 to '1' to start DMA transfer

set Control bit-1 to '1' to transfer from MSS to Fabric

(AXI write)

set Control bit-2 to '1' to transfer from Fabric to MSS
(AXI read)

use Control = 0x3 to start DMA transfer from MSS to
Fabric

use Control = 0x5 to start DMA transfer from Fabric to
MSS

<DMA Length> is hex value of number of bytes to
transfer. Maximum allowed value is 4096 bytes.

The following code block shows a typical example to perform DMA type data transfer.

memmap GEMO 0x20110000;
memmap LSRAM 0x60000000;// Through FICO

procedure main;

int dma size;

set dma size 0x100; //256 byte of dma size

print "I************************MSS DMA test*************************ll
setup 0x8 GEMO LSRAM // set source and destination address

setup OxA 0x2 Din.vec // read data from vec file

setup 0x9 dma size 0x3 //

wait lus;

setup 0x9 dma size 0x5

wait lus;

return

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 10
and its subsidiaries

2.2

2.21

2.2.2

Libero® SoC v2022.3

Simulation Flow

Interrupts

F2H Interrupts

The MSS simulation model acknowledges assertion of the F2H interrupts. There are 64 F2H interrupt ports. When
the MSS receives a valid active-high interrupt, it acknowledges them by printing a message as shown in the following
code block.

INFO : F2H INTERRUPT[O] is asserted
INFO : F2H INTERRUPT[1] is asserted
INFO : F2H INTERRUPT[2] is asserted
INFO : F2H INTERRUPT[3] is asserted
INFO : F2H INTERRUPT[4] is asserted
INFO : F2H INTERRUPT[5] is asserted
INFO : F2H INTERRUPT[6] is asserted
INFO : F2H INTERRUPT[7] is asserted
INFO : F2H INTERRUPT[8] is asserted
INFO : F2H INTERRUPT[9] is asserted
INFO : F2H INTERRUPT[10] is asserted

SHE St o e e S o o e

The interrupt inputs should be high for one MSS clock; otherwise, the MSS model rejects the interrupt for being too
low and prints a message as shown in the following code block.

ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT

[must stay high for at least one MSS clock cycle

[

[

[

[
ERROR : F2H INTERRUPT [

[

[

[

[

must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle
must stay high for at least one MSS clock cycle

ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT
ERROR : F2H INTERRUPT

H S HE S S e e 4 R e

H2F Interrupts

The MSS simulation model allows you to use text files to set and clear H2F interrupts. To do this, add the following
command in the run.do file:

vsim -L polarfire -L presynth -t lps -g H2F MEMFILE=(path)/*.txt presynth.tb

For example:

vsim -L polarfire -L presynth -t lps -g H2F MEMFILE=E:/mss_sim/h2f sim.txt presynth.tb

There are 16 H2F interrupts. The following table lists their allocation in MSS.
Table 2-4. Allocating MSS Interrupts

Maintenance

pEEwe]

0 GPIO

1 MMUART, SPI, CAN
2 12c

3 MACO

4 MAC1

5 WATCHDOGS

6

7

SCB

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 11
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

........... continued

H2F Line
8
9

10
11
12
13
14
15

G5C-Message
DDRC
G5C-DEVRST
RTC/USOC
TIMER

ENVM, QSPI
USB
MMC/SDIO

Use text file based entries to set and clear an interrupt, see the following example.

Wait Time (Time to wait in number MSS PLL clock cycles, Hex)
Interrupt Value (1l6-bit value, Hex)
Wait time (Time to wait in number MSS PLL clock cycles, Hex)
Interrupt Value (16-bit value, Hex)
Example:
100 (Wait for 100 (256 in DEC) MSS PLL clock cycles)
FFFF (Set all 16 interrupts)
1000 (Wait for 1000 (4096 in DEC) MSS clock cycles)
(Clear all 16 interrupts)

0000

The H2F interrupts can be cleared by clearing an interrupt register bit in the corresponding peripheral. These AXI
transactions can be generated by an Initiator in FPGA fabric.

Table 2-5. Clearing Interrupts

H2F Line _ AXI Address and Data Bits to Clear an Interrupt

0 GPIO

Reg g5soc_mss_regmap:GPI

O:INTR

0x2012 0080
0x2012 1080
0x2012 2080
0x2812 0080
0x2812 1080

Physical Address

0x2812 2080
Data Bit-0: To clear an interrupt,
write the bit with 1.
© 2022 Microchip Technology Inc. User Guide DS50003088G-page 12

and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

........... continued

H2F Line _ AXI Address and Data Bits to Clear an Interrupt

1 MMUART Reg g5soc_mss_regmap:MM
UART:IIM

Physical Address 0x2000 0028
0x2010 0028
0x2010 2028
0x2010 4028
0x2010 6028
0x2800 0028
0x2810 0028
0x2810 2028
0x2810 4028
0x2810 6028

Data Reading the IIM register
clears this interrupt.

Reg g5soc_mss_regmap:MM
UART:MM2

Physical Address 0x2000 0038
0x2010 0038
0x2010 2038
0x2010 4038
0x2010 6038
0x2800 0038
0x2810 0038
0x2810 2038
0x2810 4038
0x2810 6038

Data Reading the MM2 clears
the interrupt.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 13
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

........... continued

H2F Line _ AXI Address and Data Bits to Clear an Interrupt

1 MMUART Reg g5soc_mss_regmap:MM
UART:RTO

0x2000 004C
0x2010 004C
0x2010 204C
0x2010 404C
0x2010 604C
0x2800 004C
0x2810 004C
0x2810 204C
0x2810 404C
0x2810 604C

Physical Address

Data Writing the RTO register
clears this interrupt.

1 SPI Reg g5soc_mss_regmap:SPI:|

Physical Address

NT_CLEAR

0x2010 800C
0x2010 900C
0x2810 800C
0x2810 900C

Data Bit-5: Write 1 to clear the
interrupt.
Bit-4: Write 1 to clear the
interrupt.
1 CAN — Not supported.
2 12C — Not supported.
3 MACO — Not supported.
4 MACA1 — Not supported.
5 WATCHDOGS — Not supported.
6 Maintenance — Not supported.
7 SCB — Not supported.
8 G5C-Message — Not supported.
9 DDRC — Not supported.
10 G5C-DEVRST — Not supported.
11 RTC/USOC — Not supported.
12 TIMER — Not supported.
13 ENVM,QSPI — Not supported.
14 USB — Not supported.
© 2022 Microchip Technology Inc. User Guide DS50003088G-page 14

and its subsidiaries

2.3

Libero® SoC v2022.3

Simulation Flow

........... continued
H2F Line _ AXI Address and Data Bits to Clear an Interrupt
15 MMC/SDIO — Not supported.

User Cryptoprocessor
The FIC-4 is a dedicated interface for the User Cryptoprocessor. FIC-4 provides two 32-bit AHB-Lite bus interfaces
between the User Cryptoprocessor and the FPGA fabric.
* In one interface, the FPGA fabric acts as the initiator and the User Cryptoprocessor acts as target.
» In other interface, the DMA controller acts as the initiator of the User Cryptoprocessor and has a target in the
FPGA fabric.
The following table describes the simulation support for each crypto mode.

Table 2-6. Matching Crypto Modes with Simulation Support

MSS The Crypto block is available to the | Yes, streaming interface is
MSS only. supported.

Fabric The Crypto block is available to the The AHB interface is exposed to
FPGA fabric only. FPGA fabric, simulation can be

performed with Crypto.

Shared-MSS Initially, the Crypto block is The AHB interface is exposed and
connected to the MSS and can be simulation can be performed with
requested by the FPGA fabric. Crypto in fabric mode and streaming

interface in MSS mode.

Shared-Fabric Initially, the Crypto block is The AHB interface is exposed and
connected to the FPGA fabric and simulation can be performed with
can be requested by the MSS. Crypto in fabric mode and streaming

interface in MSS mode.

The signals used to change the ownership from MSS to Fabric and vice versa are listed in the following table.

Table 2-7. Crypto 10 Ports towards Fabric

N N T

Crypto_fab_request F2H Fabric request or is using the Crypto
block.

Crypto_mss_request H2F MSS request or is using the Crypto
block.

Crypto_fab_release F2H Fabric released the core.

Crypto_mss_release Internal MSS released the core.

Crypto_fab_owner H2F Indicates that the Fabric owns the
core, and the fabric interface is
enabled.

Crypto_mss_owner H2F Indicates that the MSS owns the core

and the fabric interface is disabled.

The Crypto block can be owned by either the fabric or MSS and the ownership can be transferred during operation.
Transfer of ownership requires co-operation between the MSS and Fabric designs.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 15
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Ownership Finite State Machine

The ownership FSM runs on the SCB clock that is independent of the FPGA fabric and MSS clocking systems.
During switchover events, the FSM will request that the SCB clock runs at 80 MHz rather than at 1 MHz idle rate.
Figure 2-2. Ownership Finite State Machine

mss_request && tab_rel;as’e’&&
Ifab_reques

Reset
Release

— /

fab_rEquﬂ{s[&& mss_release &&
/ Imss_request

2.31 Fabric Mode

In Fabric mode, streaming interface is not enabled. You can perform read and write operation using the AHB
interface.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 16
and its subsidiaries

2.3.2

2.3.21

Libero® SoC v2022.3

Simulation Flow

Important: For more information about using Crypto block and performing simulation, see the PolarFire
FPGA Implementing Data Security using UserCrypto Processor Application Note.

MSS Mode

In MSS mode, only streaming interface simulations are supported. AHB interface is towards MSS and will not

be exposed to Fabric. Libero SoC generates PFSOC_MSS FIC4 user.bfm file which can used to perform AXI
transaction with crypto engine. Streaming interface is also called direct transfer interface. The direct transfer interface
comprises of unidirectional data input and output ports, and associated handshakes for data transfer operations.
Direct transfers are performed when explicitly commanded by the direct transfer instructions.

DXI: Direct Transfer Block In

The DXI instruction copies a block of data from the direct transfer input port, xwdata, to the destination register
starting at the location determined by the IA/ASEL/AOP field. During the execution of the DXI instruction, the value
of the BOP field will be output on the xwaddr output port. The length of the transfer is given by the ALEN register.
Transfers are controlled by the xenable/xinaccept handshake and the DXI instruction will run until the specified
number of words have been transferred.

Table 2-8. Crypto DXI OPCODE and Operations
313029 28 27 26|25 24 23 22|21 20 19 1817 16 15 1413 12 11 10 9 8 7 6 5/ 4/3 2/ 1|0

DXI: OE IA ASEL AOP resv. BOP
[ASEL](IA/AOP)<—xwdata xwaddr—BOP — BER, MMR, TSR, FPR
PC—PC+1

Direct Transfer Input Interface Operation and Timing

The direct transfer input transaction occurs as the transmitting party drives xwdata and asserts xenable. The Crypto
block indicates that it will accept the data on the next rising edge of helk by asserting the xinaccept signal. If the
xinaccept signal is negated, then the xenable and xwdata inputs will be ignored by the Crypto block. If the direct
transfer input port is not used, the xenable signal should be tied high and the xwdata signal should be tied to a
known value.

Figure 2-3. Crypto DXI Signal Waveform

helk
|-¢—Tsuxwdata i T huowd ata -Jl
xwdata p¢ (hd { |
|-q—Tsu<enabIe —Thxenable—pi
xenable £ 7 R N
L—Tninaccept—| L Tixinaccept—»|
xinaccept | / / \ A |

To perform DXI operation in simulation, you need to provide write data on xwdata port of crypto engine. The following
steps are needed to perform a DXI transaction.
Steps to be followed in PFSOC_MSS FIC4 user.bfm file:
1. Declare “CSR_MAIN” with the address
Example:

memmap CSR MAIN 0x00007£80;
memmap LIR BASE ADDR 0x00004000;

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 17
and its subsidiaries

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/Microchip_PolarFire_FPGA_Implementing_Data_Security_Using_User_Cryptoprocessor_Application_Note_AC464_V11.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/Microchip_PolarFire_FPGA_Implementing_Data_Security_Using_User_Cryptoprocessor_Application_Note_AC464_V11.pdf

Libero® SoC v2022.3

Simulation Flow

2. Give the purge, soft reset and out of soft reset by writing the following commands.

write w CSR MAIN 0x0 0x00000020 // set purge

wait 300

write w CSR_MAIN 0x0 0x00000001 // soft reset
wait 300

write w CSR MAIN 0x0 0x00000000 // out of reset
wait 300

write w CSR MAIN 0x0 0x00000002 // clear complete

3. Once the above steps are completed, configure some of the registers to perform the DXI transactions. The
following steps are the sequence to perform DXI transactions.

Update Instructions

Update Instructions in LIR registers, LIR register Address Range is from 4000h-5FFCh
set the number of instruction user need to perform, set the number of instruction in
command with SLN as opcode at bits [31:26] and number of instructions at bit [22:13]
write w 0x4000 0x0 O0x3010elce # SLN 0x087,0xlce

write the opcode in bits[31:26] and address at [22:13], [9:0] is the address which
user 1is able to see same address on xwaddr port while performing DXI transaction.

opcode of DXI is OXE.

write w 0x4008 0x0 0x3846al3f # DXI BER:0x235, BER:0x13f

write w 0x400c 0x0 0x74040800 # HLRA

write the csrmain register to Start computation command bit

write w 0x7F80 0x0 0x10

#write the csrmain register to Write-only clear CMPLT flag bit

write w 0x00007£80 0x0 00000002

#read the csr main register

read w 0x00007£80 0x0 #

wait 300

4. Once the above steps are completed, wait for some time and read the data from the address. Address can be
calculated as DXI BER X 4 (0x235 X 4 =08d4).
You can read the data from address 0x8d4 till the length which was given in SLN register using 32_bit /64 bit
transactions.

You can get the same data that was given on the xwdata port when you do a read transaction in the BFM.

#Read data at BER:0x235
set offset 0x08d0

loop CNT 1 68 1

read64 w offset 0x0

set offset offset + 8
endloop

Steps to be followed in the testbench:

1. Once the crypto engine setup is done for DXI transfer by bfm initiator, you will receive
CRYPTO XINACCEPT M2F signal as high and CRYPTO XWADDR M2F as “13f’(which you set in the DXI
execution command). Assert CRYPTO XENABLE F2M and provide the data on CRYPTO XWDATA F2M.

2. Dessert the CRYPTO XENABLE F2Mwhen CRYPTO XINACCEPT M2F is zero.
The following code block shows the example commands used in a design.

FHEH
#H 444 ###DXT INTERFACE########44
FHEHH R

procedure main;
memmap CSR MAIN 0x00007£80;
memmap LIR BASE ADDR 0x00004000;
memmap FPR BASE ADDR 0x00003000;
memmap BER BASE ADDR 0x00000000;
int offset
int CNT
write w CSR_MAIN 0x0 0x00000020 // set purge

wait 300
write w CSR MAIN 0x0 0x00000001 // soft reset

wait 300
write w CSR MAIN 0x0 0x00000000 // out of reset

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 18
and its subsidiaries

2.3.2.2

Libero® SoC v2022.3

Simulation Flow

wait 300
write w CSR MAIN 0x0 0x00000002 // clear complete
A A A A A A A A 0 A A 0 A A A O A A A A A A A A

Update Instructions in LIR registers

#LIR Adress Range --4000h-5FFCh LIR Linear instruction register

set the number of instruction command at bit [22:13]

write w 0x4000 0x0 0x3010el3h # SLN 0x087,0xlce

write the opcode in bits[31:26] and address at [22:13] and [9:0] is the address
we see on xaddr while perfoming DXI transaction.

opcode of DXI is OXE.

write w 0x4008 0x0 0x3846a000 # DXI BER:0x235, BER:0x13f

write w 0x400c 0x0 0x74040800 # HLRA

write w O0x7F80 0x0 0x10 # write the csrmain register to Start computation command bit
write w 0x00007£80 0x0 00000002
#write the csrmain register to Write-only clear CMPLT flag bit

read w 0x00007£80 0x0
#read the csr main register
wait 300

#Read data at BER:0x235
set offset 0x08d0
loop CNT 1 68 1
read64 w offset 0x0
set offset offset + 8
endloop

return

DXO: Direct Transfer Block Out

The DXO instruction copies a block of data to the direct transfer output port, xrdata, from the source register starting
at the location determined by the IB/BSEL/BOP field. During the execution of the DXO instruction, the value of the
AOP field will be output on the xraddr output port. The length of the transfer is given by the ALEN register. Transfers
are controlled by the xvalidout/xoutack handshake, and the DXO instruction runs until the specified number of
words have been transferred.

Table 2-9. Crypto DXO OPCODE and Operations

3/ 322 2/2/2/22222111111/1111 98|76 543210
10 987 6 543 21 0/9 87 6 5 43 210

DXO: OF Reserve AOP | BSE BOP

d B L
xrdata<[BSEL](IB/BOP) xraddr<—AOP — BER, MMR, TSR, FPR
PC—PC+1

Direct Transfer Output Interface Operation and Timing

The direct transfer output transaction occurs as the rising edge of hclk, data is presented on xrdata, and the
xvalidout signal is asserted. The receiving party indicates receipt of the data by asserting the xoutack signal, which
is sampled on the rising edge of hclk by the Crypto block. The xoutack signal may be asserted on the same clock
cycle that xvalidout is asserted or any subsequent clock cycle. The following waveform shows an example where
the xoutack is asserted one cycle after xvalidout is asserted. If xvalid-out is negated, then the xoutack signal is
ignored.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 19
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Figure 2-4. Crypto DXO Signal Waveform

bk \ / \ / \
it ——:\(_(.Urxrdata T(_(.-1Tb<rclata |
—»{ Tnovalidout —»{ Tixvalidout
xvalidout [/ N |
je—Tsuxoutack Thxoutack >
xoutack | N\ / N\ |

Following are the steps that need to be followed to perform DXO transaction.

Steps to be followed in PFSOC_MSS_FIC4 user.bfm file:

1. Declare “CSR_MIAN” with the address
Example:

memmap CSR MAIN 0x00007£80;
memmap LIR BASE ADDR 0x00004000;

2. Give the purge, soft reset and out of soft reset by writing the following commands.

write w CSR _MAIN 0x0 0x00000020 // set purge

wait 300

write w CSR MAIN 0x0 0x00000001 // soft reset
wait 300

write w CSR MAIN 0x0 0x00000000 // out of reset
wait 300

write w CSR MAIN 0x0 0x00000002 // clear complete

3. Once the above steps are completed write the at address that you are writing along with DXO op code and the
number of instructions that you are giving in SLN command.

write w 0x0bl8 0x0 0x290cadba
write w 0x0Oblc 0x0 0x85b3d5bl

write w 0x0cl8 0x0 Ox8f7f3ff6

4. After writing the write data, configure some of the registers to perform the DXO transactions. Perform DXO
transactions in the following sequence.

#Provide the number of instruction user need to perform, set the number of instructions
in command with

#SLN as opcode at [31:26] and address at bit [22:13]

write w 0x5000 0x0 0x300820a7 # SLN 0x041,0x0a7

write the opcode in bits[31:26] and address where user need to write data at [9:0].
[22:13] is the address which user can see on xraddr while performing DXO transaction.
opcode of DXO is OXF.

write w 0x5004 0x0 0x3c6342c6

DXO BER:0x31a, BER:0x2c6

write w 0x5008 0x0 0x74040800

HLRA is the compulsory command we need to write

#write the csrmain register to Start computation command bit

write w 0x7F80 0x0 0x10

to read the status of the transaction

read w 0x80000000 0x0

5. You will get the read data on xrdata port which is accessible to fabric.

Steps to be followed in the testbench:

1. Once the crypto engine setup is done for DXO transfer by bfm initiator you will receive
the CRYPTO XVALIDOUT M2F signal as high. Assert CRYPTO XOUTACK F2M and read data on

CRYPTO XRDATA F2M.
2. Dessertthe CRYPTO XOUTACK F2M when CRYPTO XVALIDOUT M2F is zero.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 20

and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

3. You can get the same data that you wrote from the PFSOC_MSS FIC4 user.bfmfile.

The following code block shows the example commands for DXO interface used in a design.

TR HHA A A A A A A A A
###H#####DXO INTERFACE#H####### 44
FHEHFHHHHH RS
procedure main;

memmap CSR MAIN 0x00007£80;
memmap LIR BASE ADDR 0x00004000;
memmap FPR BASE ADDR 0x00003000;
memmap BER BASE ADDR 0x00000000;
int offset

int CNT

write w CSR _MAIN 0x0 0x00000020 // set purge

wait 300

write w CSR _MAIN 0x0 0x00000001 // soft reset
wait 300

write w CSR _MAIN 0x0 0x00000000 // out of reset
wait 300

write w CSR_MAIN 0x0 0x00000002 // clear complete

//writing the data in the adaress

// (adxo_adress divide by 4)

//which we are giving in the DXO regsiter
write w 0x0b1l8 0x0 0x290cadba

write w 0xOblc 0x0 0x85b3d5bl
write w 0x0b20 0x0 Ox5cead8le
write w 0x0b24 0x0 0x37295bce
write w 0x0b28 0x0 0xd4368de7
write w 0x0b2c 0x0 Ox6e6a%9ab56
write w 0x0b30 0x0 Oxcdc436d5
write w 0x0b34 0x0 0x88d7b83f
write w 0x0b38 0x0 0x19966aec
write w 0x0b3c 0x0 0x997bab2b
write w 0x0b40 0x0 Ox8a468a5f
write w 0x0b44 0x0 Oxa4l3c77b
write w 0x0b48 0x0 0x5968d480
write w 0x0bdc 0x0 Oxa56447e3
write w 0x0b50 0x0 0xf2158e5b
write w 0x0b54 0x0 0xdc96b803
write w 0x0b58 0x0 0x6d2469c0
write w 0x0b5c 0x0 O0x5a23c3ee
write w 0x0b60 0x0 0x5d704806
write w 0x0b64 0x0 0x01840£82
write w 0x0b68 0x0 0xb3843909
write w 0x0b6c 0x0 0x768f73b0
write w 0x0b70 0x0 Ox74a77le6
write w 0x0b74 0x0 0x043cf308
write w 0x0b78 0x0 Ox5leleb8a
write w 0x0b7c 0x0 Oxd5e33ef3
write w 0x0b80 0x0 Ox7b4ac9e8
write w 0x0b84 0x0 0x501f4830
write w 0x0b88 0x0 Oxa85a6c97
write w 0x0b8c 0x0 0xeB893f45f
write w 0x0b90 0x0 0x81966fdd
write w 0x0b94 0x0 0x59d3d388
write w 0x0b98 0x0 0x01ed420f6
write w 0x0b9c 0x0 Oxalee76c3
write w 0x0ba0 0x0 Ox86cafbbf
write w 0xOba4 0x0 Oxaab33eal
write w 0x0ba8 0x0 0x1014d0f0
write w 0xObac 0x0 0x6666031c
write w 0x0bb0 0x0 Oxdec269f9
write w 0x0bb4 0x0 0x9d972097
write w 0x0bb8 0x0 0x7£251d52
write w 0xObbc 0x0 O0xe6d72245
write w 0x0bcO 0x0 Ox0f5cé6fac
write w 0xObc4 0x0 Oxebeea9ld
write w 0x0bc8 0x0 Oxdalda3dl
write w 0xObcc 0x0 Oxb6a8lb9b
write w 0x0bd0 0x0 Oxdbbl36a3

© 2022 Microchip Technology Inc. User Guide
and its subsidiaries

DS50003088G-page 21

2.3.3

234

Libero® SoC v2022.3

Simulation Flow

write w 0x0bd4 0x0 0x6678b258
write w 0x0bd8 0x0 Oxdl527aad
write w 0xObdc 0x0 Oxafd324e7
write w 0x0beO 0x0 0x207513b0
write w 0x0bed4 0x0 Oxf5ba6243
write w 0x0be8 0x0 0x1937ac22
write w 0xObec 0x0 0x46a7fe06
write w 0x0bf0 0x0 0x2b00efc2
write w 0x0bf4 0x0 0x9b02fdc3
write w 0x0bf8 0x0 0x8555b4dab
write w 0xObfc 0x0 0x8f564f8f
write w 0x0c00 0x0 0x0dc07d70
write w 0x0c04 0x0 0xd5953efb
write w 0x0c08 0x0 Oxb7lebdlf
write w 0x0cOc 0x0 Oxf8eeb65e3
write w 0x0clO0 0x0 0x384a2df0
write w 0x0cl4d 0x0 Oxaf708549
write w 0x0cl8 0x0 Ox8f7f3ff6

#Provide the number of instructions we need to perform
#set the number of instructions in command with

#SLN as opcode at [31:26] and address at bit [22:13]
write w 0x5000 0x0 0x300820a7 # SLN 0x041,0x0a7

write the opcode in bits[31:26] and address at [9:0] and [22:13] is the address
we see on xaddr while performing DXO transaction.
opcode of DXO is OXF.

write w 0x5004 0x0 0x3c6342c6 # DXO BER:0x3la, BER:0x2c6
write w 0x5008 0x0 0x74040800 # HLRA is the compulsory command we need to write

#write the csrmain register to Start computation command bit
write w 0x7F80 0x0 0x10

To start read execution
read w 0x80000004 0x0

Shared MSS Mode

By default, Crypto is in MSS mode. In this mode, streaming interface simulations are supported. You can perform the
same operations which are performed in MSS mode.

To change Crypto from MSS mode to Fabric mode the following sequence needs to be followed.

Steps to be followed in PFSOC_MSS_FIC4 user.bfmfile
Request crypto controller from MSS mode to Fabric mode by writing mss_release =1 andmss request ='b0;.
You can also perform this operation by writing TOWRITE is setto 2 in PFSOC_MSS_FIC4 user.bfm.

IOWRITE 0x00000002

Steps to be followed in the testbench
Once you have requested the Crypto controller from user.bfm file, assert CRYPTO REQUEST F2M and deassert
CRYPTO RELEASE F2M to change the mode from MSS mode to Fabric mode.

After changing into Fabric mode, you can perform the same operations which are performed in Fabric mode and
MSS interface will be disconnected from Crypto block.

Shared Fabric Mode

By default, Crypto is in Fabric mode. You can perform the same operations which are performed in Fabric mode. The
following steps are to change Crypto from Fabric mode to MSS mode.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 22
and its subsidiaries

2.4

Libero® SoC v2022.3

Simulation Flow

Steps to be followed in PFSOC_MSS_FIC4_user.bfm file

Request the Crypto controller to change from Fabric mode to MSS mode by writing mss_release =0
andmss request =1’bl;. You can also perform this operation by writing TOWRITE is set to 1 in
PFSOC _MSS FIC4 user.bfm.

IOWRITE 0x00000001

Steps to be followed in the testbench
Once you have requested crypto controller from user .bfm file, deassert CRYPTO REQUEST F2M and assert
CRYPTO RELEASE F2M to change the mode from Fabric mode to MSS mode.

DDR Controller

To enable fast simulation, the DDR controller follows a BFM behavioral model. It is a single model for DDR
controller+PHY+DDR Memory, with no activity seen on the DDR pins connected to an external DDR memory. The
DDR memory is modeled as a sparse array; it performs address decoding and prints row, column, bank, and rank
address information in a simulation log. The following figure shows the Unused DDR dialog box.

Figure 2-5. Unused DDR

Project Edit Help
5 ' i
—
e
Peripherals] CDR Memary] L2 Cache Crypto Fabric Interface Controllers

B oOwnership

Mode |Unused hd

B Configuration

When no DDR memory is selected in MSS stand-alone configurator, and FIC tries to access the DDR memory, MSS
simulation model displays the following message in the simulation log.

DDR is set to unused in the MSS Configuration, cannot process AXI transaction with address
00c7000000.

The MSS stand-alone configurator configures the MSS DDR and generates configuration parameters. The simulation
model considers only the parameters in the following table.

Table 2-10. MSS DDR Configuration Parameter Support

MSS Configurator Considered Parameters

DDR_DDRC_CFG_CHIPADDR_MAP_CFG_CHIPADDR_MAP All possible values
DDR_DDRC_CFG_BANKADDR_MAP_0_CFG_BANKADDR_MAP_0 All possible values
DDR_DDRC_CFG_ROWADDR_MAP_0_CFG_ROWADDR_MAP_0 All possible values
DDR_DDRC_CFG_ROWADDR_MAP_1_CFG_ROWADDR_MAP_1 All possible values
DDR_DDRC_CFG_ROWADDR_MAP_2 CFG_ROWADDR_MAP_2 All possible values
DDR_DDRC_CFG_ROWADDR_MAP_3 CFG_ROWADDR_MAP_3 All possible values
DDR_DDRC_CFG_COLADDR_MAP_0_CFG_COLADDR_MAP 0 All possible values

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 23

and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

........... continued

DDR_DDRC_CFG_COLADDR_MAP_1_CFG_COLADDR_MAP_1 All possible values
DDR_DDRC_CFG_COLADDR_MAP_2_CFG_COLADDR_MAP_2 All possible values
DDR_DDRC_CFG_MEM_COLBITS _CFG_MEM_COLBITS All possible values
DDR_DDRC_CFG_MEM_ROWBITS_CFG_MEM_ROWBITS All possible values
DDR_DDRC_CFG_MEM_BANKBITS_CFG_MEM_BANKBITS All possible values
DDR_DDRC_CFG_NUM_RANKS_CFG_NUM_RANKS All possible values
DDR_DDRC_CFG_MANUAL_ADDRESS_MAP_CFG_MANUAL_ADDRESS_MAP All possible values
DDR_DDRC_CFG_MEMORY_TYPE_CFG_MEMORY_TYPE All possible values
DDR_DDRC_CFG_BG_INTERLEAVE_CFG_BG_INTERLEAVE All possible values
DDR_DDRC_CFG_BL_MODE_CFG_BL_MODE 8
DDR_DDRC_CFG_DQ_WIDTH_CFG_DQ_WIDTH All possible values
DDR_DDRC_CFG_CWL_CFG_CWL(DDR3/3L/4) All possible values
DDR_DDRC_CFG_CL_CFG_CL(DDR3/3L/4) All possible values
DDR_DDRC_CFG_WL_CFG_WL(LPDDR3/4) All possible values
DDR_DDRC_CFG_RL_CFG_RL(LPDDR3/4) All possible values
DDR DDRC_CFG_CLK FREQ All possible values

The following are the MSS DDR model limitations.

» AXl transactions with 64-bit data only are supported. There is no support for word (32-bit), halfword (16-bit)
based, and byte (8-bit) based AXI transactions.

» Supports Burst Length of Fixed BL8 only.

In page hits and page misses in real time applications, this simulation model always considers page hits to avoid
latencies caused by page misses.

You can access MSS DDR from any FIC interface and choose to share (compromise) bandwidth to the QoS initiator.
By default, this QoS initiator is enabled and accesses DDR with default configurations. See QoS Parameter for more
details.

The fabric initiator can access the DDR memory with the following AXI address region.

Table 2-11. AXI Address Region

64-bit Address Start | 64-bit Address End | 32-bit Address Start | 32-bit Address End

Non-Cache access 0x14_0000_0000 Ox17_ffff_ffff 0xc000_0000 Oxcfff_ffff
Non-Cache WCB 0x18_0000_0000 Ox1b_ffff_ffff 0xd000_0000 Oxdfff_ffff
access

In DDR Memory Partition tab of MSS stand-alone configurator, the DDR memory is partitioned into Cached and
Non-Cached region as shown in the following figure.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 24
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Figure 2-6. DDR Memory Partition

Periprersls | DDRMemory | L2Cache | FabricInterface Controlers | Clocke | MSSREFCLKYO | Bankélfos | Bamk2nos | seMITIos Memory Partition and Protection Mse |
¥ Use PMP Configurations

DDR Memory Partition I Processor PMP I AXI Switch MPU I

Offset Address ‘ Range ‘ High Address | Physical DDR Offset
Cached 1GB 0x8000.0000 |0 IMB -] 0x8000_0000 N/A
Cached 16GB 0x10_0000_0000 |0 6B -| 0x10_0000_0000 N/A
Non-Cached 256MB |0xC000_0000 |256 IMB -| OXCFFF_FFFF 0x0000_0000
Non-Cached 16GB |0x14_0000_0000 |0 6B -| 0x14.0000_0000 N/A

Note1: Range selection for any Cached or Non-Cached memory region must be a multiple of 16 MB.

Note2: Memory is not allocated in DDR when Range is set to 0.

The stand-alone MSS configurator calculates the Physical DDR offset for each region, and this information is also
used by the MSS simulation model. At present, the MSS-DDR simulation model supports access of Non-Cache
region only from FPGA fabric.

After configuring the MSS-DDR and creating a Libero project, you can launch the pre-synthesis simulation. The
following is an example of a simulation log of a fabric initiator, for example, PCle-BFM accessing MSS-DDR.

FH A R S R S R S
AMBA BFM Model
Version 2.1 22Dec08

#

#

#

Opening BFM Script file PCIE 1.vec

Read 41 Vectors - Compiler Version 26.28

BFM :Filenames referenced in Vectors

PF_PCIE Cl1 PF PCIE Cl 0 PF PCIE PCIE 1 user.bfm

BFM:22:writemultiple64 x c7000000 00000000 ... at 105 ns

BFM: Data Write c7000000 0000000000000001

BFM:24:readmultchk64 x c7000000 00000000 ... at 145 ns

BFM: Data Write ¢7000008 0000000000000002

Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000000, data = 00000001
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000001, data = 00000000
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000002, data = 00000002
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000003, data = 00000000
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000004, data = 00000003
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000005, data = 00000000
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000006, data = XXXXXXXX
Writing to DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000007, data = XXXXXXXX
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

OO OO OOOo

BFM: Data Write c¢7000010 0000000000000003

Reading from DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000000, data = 00000001
Reading from DDR3 Memory bank = 00, row = 00700, col = 00000001, data = 00000000
Reading from DDR3 Memory , bank = 00, row = 00700, col = 00000002, data = 00000002
Reading from DDR3 Memory , bank = 00, row = 00700, col = 00000003, data = 00000000
Reading from DDR3 Memory , bank = 00, row = 00700, col = 00000004, data = 00000003

rank =
rank =
rank
rank

Reading from DDR3 Memory rank bank = 00, row = 00700, col = 00000005, data = 00000000
Reading from DDR3 Memory rank = bank = 00, row = 00700, col = 00000006, data = XXXXXXXX
Reading from DDR3 Memory @ rank = 0, bank = 00, row = 00700, col = 00000007, data = XXXXXXXX
BFM: Data Read c7000000 0000000000000001 MASK:ffffffffffffffff at 385.000000ns

BFM:27:return

BFM: Data Read c7000008 0000000000000002 MASK:ffffffffffffffff at 395.000000ns

BFM: Data Read c7000010 0000000000000003 MASK:ffffffffffffffff at 405.000000ns

FH A R R

@ 0,
@ 0
@ 0
@ 0
@ 0
@ 0

PCIEl BFM Simulation Complete - 3 Instructions - NO ERRORS

FHEFHFH AR AR R R R

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 25
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

You can disable the row and column related prints coming from the emulated DDR memory by using vgi,, commands
as listed in following table.

Table 2-12. MSS DDR vsim Parameters

DEBUG_MEM Enable/disable the prints coming from * 1: Prints row and column
DDR memory in simulation log. related information in the
simulation log (Default)
* 0: Does not print row and
column related information in
simulation log

You can change the value of this
parameter through vg;,, command as
follows.

To disable the prints:

vsim -L polarfire -L presynth -
t 1lps -gDEBUG MEM=0 presynth.tb

The following is an example of a simulation log where PCle-BFM accessing MSS-DDR with DDR memory and prints
are disabled.

FH A R R S R R R R
AMBA BFM Model
Version 2.1 22Dec08

#
#
#
Opening BFM Script file PCIE 1l.vec

Read 41 Vectors - Compiler Version 26.28

BFM :Filenames referenced in Vectors

PF PCIE Cl PF PCIE Cl 0 PF PCIE PCIE 1 user.bfm

BFM:22:writemultiple64 x c7000000 00000000 ... at 105 ns

BFM: Data Write c7000000 0000000000000001

BFM:24:readmultchk64 x c7000000 00000000 ... at 145 ns

BFM: Data Write c7000008 0000000000000002

BFM: Data Write c7000010 0000000000000003

BFM: Data Read c7000000 0000000000000001 MASK:ffffffffffffffff at 385.000000ns
BFM:27:return

BFM: Data Read c7000008 0000000000000002 MASK:ffffffffffffffff at 395.000000ns
BFM: Data Read c7000010 0000000000000003 MASK:ffffffffffffffff at 405.000000ns
FHAF A A R R R R R

#
#
#
#

PCIEl BFM Simulation Complete - 3 Instructions - NO ERRORS

AR R R R R R

DDR Memory Initialization
DDR memory is modeled as a sparse array, and it allows you to initialize DDR memory content with the .menmn file.
The pre-initialized DDR memory helps in many applications by avoiding you to perform first AXI write transactions
and then readback, instead, the fabric host can now start reading the DDR memory from the start of the simulation.
Follow the steps to initialize the DDR memory:

1. Prepare a user .memn file with the AXI address and data.

2. Execute a python script that converts the user .mem file to ddr . mem file. The simulation model reads the .mem
file The address and data content from this file is used to initialize the internal memory array.
3. Run a simulation to see and use the initialized data.

User memory file (.mem)
Follow the instructions while creating a user .mem file:

* The AXI address must start with "@" in each address line, and it must be within the range as listed in the
following table.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 26
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Table 2-13. Configurable Address in User Memory File

32-bit address segment 0xC000_0000 to OXCFFF_FFFF
38-bit address segment 0x14_0000_0000 to 0x17_FFFF_FFFF

Tip: The memory contents can be distributed by specifying multiple AXI start addresses of the
corresponding segment. The model automatically calculates incremental addresses for each location
within the segment.

» For DQ WIDTH = 16 configuration, specify the AXI address with offset of 0x10 only. The maximum address that
can be given in user mem file is OXCFFF_FFFO for 32-bit address and 0x17_FFFF_FFFO for 38-bit address. The
AXI data to be initialized must have width = (D0 WIDTH * BL MAX) = 16"8 = 128 bits.

Important: At present, only BL_MAX = 8 is supported in simulation.

The following code block shows the user memory file format.

@ 32-bit AXI address
128 bits of AXI data
128 bits of AXI data

128 bits of AXI data
@ 38-bit AXI address
128 bits of AXI data
128 bits of AXI data

128 bits of AXI data

» For DQ_WIDTH=32 configuration, specify the AXI address with offset of 0x20 only. The maximum address that
can be given in the user mem file is OXCFFF_FFEO for 32-bit address and 0x17_FFFF_FFEO for 38-bit address.
The AXI data to be initialized must have width = (DQ_WIDTH * BL_ MAX) = 32*8 = 256 bits.

Important: At present, only BL_MAX = 8 is supported in simulation.

The following code block shows the user memory file format.

@ 32-bit AXI address
256 bits of AXI data
256 bits of AXI data

128 bits of AXI data
@ 38-bit AXI address
256 bits of AXI data
256 bits of AXI data

256 bits of AXI data

+ If the AXI data width in each line of the user memory file is less than (DQ_WIDTH * BL_ MAX), then the MSB bits
are initialized with "0" in simulation. If the AXI data width in each line of memory file is greater than (DQ_WIDTH

* BL_MAX), then all the bits are initialized with "x" in simulation.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 27
and its subsidiaries

Libero® SoC v2022.3

Simulation Flow

Python Script Execution

Once the user .memn file is generated, parse this through a python script that generates a ddr mem file. This script
converts AXI address to DDR Physical address as per DDR configuration. To run this script, Python3 must be
installed on your PC.

Important: Generate the ddr menmn file with the name “PFSoC_MSS DDR_INIT.mem” only, and it must be
available in the simulation folder of the Libero design project for the simulation to run.

The following are the arguments to the script:

*+ -netlist path followed by the name and location of netlist generated by pfsoc mss configurator (. v file).
+ -user_mem path followed by the name and location of the user memory file.
*+ -ddr_mem path followed by the name “PFSoC_MSS DDR _INIT.mem” and the location of the ddr mem file.

Syntax:

pfsoc_mss_ddr_init v2.py -netlist path <path to netlist file> -user mem path <path to input
user mem file> -ddr mem path <path to output ddr mem file>

The following figure shows an example of the execution of the script in Cygwin terminal.

Figure 2-7. Execution of Script in Cygwin Terminal

-user_mem_path axi_addr.mem -ddr_mem_path PFSOr DDR_INIT.mem

Running a simulation

The generated ddr mem file must be named as PFSoC_MSS DDR INIT.mem, and it must be available

in the simulation folder of the Libero design project for simulation to run. To run a simulation, add

+PFSoC_MSS DDR_INIT FILE as an additional option in Command > Project settings > Vsim commands >
Additional options as shown in the following figure.

Figure 2-8. Project Settings

@ Project settings - m] 4

Device selection
Device settings

Design flow

Analysis operating conditions

= Simulation options ; Disable pulse filtering)
DO file Typical during SDF based simulations Slow process, Low voltage and Low temperature

SDF timing delays SDF Corner

Minimum ® Slow process, Low voltage and High temperature

Waveforms

® Manimum Fast process,High voltage and Low temperature
Timescale
= Simulation libraries
Resolution: 1os
PolarFireSaC [1o
General Settings Additional options: [+PFSoC_MsS_DDR_INIT_FILE
Global Include Paths
SmartDesign PiPath: [2:/oc/2022_2_0_4_veer Designer/ibjmadelsmpra/oljnf_arymta_win_me_pi.dl =]

With this additional Vsim option, the DDR simulation model invokes the task to read the contents from ddr mem
file and initializes the internal memory array. The following examples show user mem file contents along with the
initialized array in simulation.

* User mem file for DO WIDTH = 16, BL MAX =8

@C0000000

06967346CDB6CCA21AESAF8F3A6E9214
@C0000020

06967346CDB6CCA21AESAF8F3A6E9214
TFA596AB8AC68D27EC35BFECC46B376E
5A79211F6A8908C93C98A549E62C5DAY
63FAAC6091B17839AB0OB562D323CA51E
501C37F12E4CAOA4CTEA3B8AIBEF6279B
36C9B82EEF96B7347B1FATEC1IA9FF18D

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 28
and its subsidiaries

https://ww1.microchip.com/downloads/secure/aemDocuments/documents/FPGA/SOCDesignFiles/pfsoc_mss_ddr_init_v2.zip

Libero® SoC v2022.3

Simulation Flow

@CFFFFFFO
05E7A8EO8DF5F46333A09306618C0E3B
@1400000000
E4B5EBEE9490330FCESD1363A3EC87C7
@1400000020
52DB6E20042C0369F87425568F9D0B23
4E9CD44A938EE3B6FBSFED6565E1B655
58F737326DA54C9BC236B4F42D47DFCS8
@14FFFFFFFO
12345678901234567891234567891234

Figure 2-9. Initialized DDR Memory Array

20000000 | 06567346cdbéccazlacdafiflades2ld
20000002 | 065967346cdbéccazlac%afifiades2ld
20000010 | 7fa5%6abBacé8d2Tec3itbfeccddéb3Tie
20000012 | 5a79211£6a8908c93c98a54%=62c5dad
20000020 | 63f£aac6091bl783%ab0b562d323cable
20000023 | 501c3Tfl2edcaladcTeaibiadhiadToh
20000030 | 36cSbi82eeff6b734TblfaTecladfflid
2TELEEf3 | 05eTaBelBdE5£46333a09306618c0elb
28000000 | ed4b5ebeef480330fce5dli6ialdecidTcT
28000003 | 52db6e20042c0369£87425563£9d0b23
283000010 | 4e5cd44a938eelbbfbifedasaielbass
23000013 8£737326da54c%bcd36b4£42d4TdEcE
aTfffffd | 12345678901234567891234567891234

User mem file for DO WIDTH = 32, BL MAX =8

@Cc0000000
06967346CDB6CCA21AE9AF8F3A6E921406967346CDB6CCA21AEIAF8F3A6ES214
@C0000020
06967346CDB6CCA21AE9AF8F3A6E921406967346CDB6CCA21AE9AF8F3A6E9214
TFA596AB8AC68D27EC35BFECC46B376E7FAS96ABSAC68D27EC35BFECC46B376E
5A79211F6A8908C93C98A549E62C5DA95A79211F6A8908CI3CI8A549E62C5DAY
63FAAC6091B17839ABOB562D323CA51E63FAAC6091B17839AB0B562D323CA51E
501C37F12E4CAOA4CTEA3B8A9BEF6279B501C37F12E4CAOA4CTEA3B8AIBF6279B
36C9B82EEF96B7347B1FATECLAOFF18D36CO9B82EEF96B7347B1FATECIA9FF18D
@CFFFFFEO
05SE7A8EO08DF5F46333A09306618C0E3BOSE7A8BEO8DEF5F46333A09306618C0E3B
@1400000000
E4B5EBEES490330FCESD1363A3EC87C7E4BSEBEE9490330FCESD1363A3EC87CT
@1400000020
52DB6E20042C0369F87425568F9D0B2352DB6E20042C0369F87425568F9D0B23
4E9CD44A938EE3B6FBS5FED6565E1B6554E9CD44A938EE3B6FBSFED6565E1B655
58F737326DA54C9BC236B4F42D47DFC858F737326DA54C9BC236B4F42D47DFC8
@14FFFFFFEQ
1234567890123456789123456789123412345678901234567891234567891234

Figure 2-10. Initialized DDR Memory Array

10000000 | 06967346cdbéccallae%afif3abed21406967346cdbbccallaed9afiflatesald
10000008 | 06967346cdbéccallacfafif3afed2140696T7346cdbfccallacd9afiflafes2ld
10000010 | 7faS%6abfactdd27ec3Sbfeccd6b3TeeTia5%6abiact8d2Tec3Shfeccdbi3Tee
10000012 | 5a79211£6a8903c93c93a049262c5dafbaT79211L6a3908c93c83a54%e62c0dal
10000020 | 63faacé091bl7839%ab0b562d323ca5le63faact091b17839ab0b562d323calsle
100000238 | 501c37fl2edcaladcTeadb8a9bE6279b501c37E12e4caladcTeadbiadhie2 79k
10000030 | 36c9b82eeffebT734ThliaTecladffl2d36cihi2eefd6bT34TblaTecladff1sd
13££££f£8 | 05eTafe08df5f46333a09306618c0e3b052Ta8208df5£46333a09306618c0e3k
14000000 | 24bSebee9490330fce5dl363a3eciTcTedbSebeecd490330fceidl363a3ecE8TeT
14000008 | 52db6220042c0369L87425568L8d0b2352dbee20042c0369E87425565£9d0b23
14000010 | 4e9cd44a93feelb6ibifedesetelbeindedcdddaldlideeldbeibifedsseielbenl
14000018 | 58£737326da54c9%bc236b4542d47dfc858£737326da54c%ca36b442d47dEcE
S3fLEfFf3 | 1234567390123456789123456755123412345678901234567891234567891234

© 2022 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003088G-page 29

2.5

Libero® SoC v2022.3

Simulation Flow

QoS Parameter

The QoS feature allows bandwidth to be shared for the fabric initiators while accessing DDR. To share bandwidth,
an AXl initiator (referred as QoS initiator) is connected internally at the AXI switch that performs the DDR access.
This AXl initiator, which is hidden from you, performs DDR access controlled through QoS parameters. The QoS is

enabled only when DDR is enabled.

You can change the QoS parameter values using vsim commands while launching the simulation, to do so, see the

following table.
Table 2-14. MSS QoS Parameters

QOS_AXI_CLKS

QOS_START_ADDRESS

Number of AXI clocks at which QoS initiator
performs read/write AXI transactions with DDR.
To change the value of this parameter, use
vsim command as shown below:

vsim -L polarfire -L presynth -t
1ps -9
Q0S AXI CLKS = 10000 presynth.tb

Base address for QoS operation. Change

this address if the same address region is
being used by another application through FIC.
To avoid contention between QoS and FIC
accessing the same DDR region, shift the QoS
access region to an unused address region. To
change the value of this parameter, use vsim
command as shown below:

For 38-bit: vsim -1 polarfire

-L presynth -t 1lps -

gQOS_START ADDRESS=38'h1600000000
presynth.tb

For 32-bit: (also need to change
DDR_ADDRESS REGION for 32-bit) vsim -

L polarfire -L presynth -t lps
-gQ0S_START ADDRESS=32'hcd000000 -
gDDR ADDRESS REGION=0 presynth.tb

5000

38'h00_C000_0000

© 2022 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003088G-page 30

2.6

Libero® SoC v2022.3

Simulation Flow

........... continued

NO_OF_QOS_TRANSACTIONS

Number of burst read/write transactions 128 when DDR is
performed by QoS at regular or cyclic interval used.

of Q0S AXI CLKS. If set to zero, QoS does not

perform any AXI transactions to DDR and the

entire bandwidth is allocated to FICs.

Note: Make sure the QOS_AXI_CLKS value is

much greater than the finish time of all QoS AXI

transactions. The smallest burst size typically

uses:

¢ 10 AXI clocks for read or write burst
transaction with DQ=16.

e 20 AXI clocks for read or write burst
transaction with DQ=16.

To change the value of this parameter, use
vsim command as shown below:

vsim -L polarfire -L presynth -
t 1lps —-gNO OF QOS TRANSACTIONS=512
presynth.tb

The following shows an example of a simulation log where a fabric QoS initiator accesses DDR with number of QoS
transactions set to ONE.

Writing
Writing
Writing
Writing
Writing
Writing
Writing
Writing
Reading
Reading
Reading
Reading
Reading
Reading
Reading
Reading

S oS HE S S e S o SR e S o o SR e o 9 o

to DDR3
to DDR3
to DDR3
to DDR3
to DDR3
to DDR3
to DDR3
to DDR3

QoS Write Transactions
QoS Read Transactions

Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory

e ®®®®

from DDR3 Memory
from DDR3 Memory
from DDR3 Memory
from DDR3 Memory
from DDR3 Memory
from DDR3 Memory
from DDR3 Memory
from DDR3 Memory

L2-LIM Access

Fabric initiator might try to get access to the L2-LIM memory and initiate data transfer between LIM and fabric. To
mimic this, 1920 KB of memory is attached to S8 of the AXI switch. In simulation, this memory is not partitioned as
per the configured WAY in MSS configurator. Only the address range 0x08000_0000 to 0x081D_FFFF (1920KB) is
supported, which is for L2-LIM and no support is provided for the L2 Zero Device. The fabric initiators from FIC-0/1/2
can access this L2-LIM. As WAYO is always reserved for Cache, simulation model prints a message when the
address range 0x081E_0000 to 0x81F_FFFF is accessed from fabric and no read/write happens.

rank =
rank =
rank =
rank =
rank =
rank =
rank =
rank =
@ rank

rank

rank

rank

rank
rank
rank

@
@
@
@ rank =
@
@
d

1

Completed

1 Completed

bank = 00, row = 00000, col = 00000000, data = 12345678
bank = 00, row = 00000, col = 00000001, data = aabbccdd
bank = 00, row = 00000, col = 00000002, data = 12355577
bank = 00, row = 00000, col = 00000003, data = aabbccdd
bank = 00, row = 00000, col = 00000004, data = 12365476
bank = 00, row = 00000, col = 00000005, data = aabbccdd
bank = 00, row = 00000, col = 00000006, data = 12375375
bank = 00, row = 00000, col = 00000007, data = aabbccdd
0, bank = 00, row = 00000, col = 00000000, data = 12345678
0, bank = 00, row = 00000, col = 00000001, data = aabbccdd
0, bank = 00, row = 00000, col = 00000002, data = 12355577
0, bank = 00, row = 00000, col = 00000003, data = aabbccdd
0, bank = 00, row = 00000, col = 00000004, data = 12365476
0, bank = 00, row = 00000, col = 00000005, data = aabbccdd
0, bank = 00, row = 00000, col = 00000006, data = 12375375
0, bank = 00, row = 00000, col = 00000007, data = aabbccdd

© 2022 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003088G-page 31

Libero® SoC v2022.3

Revision History

Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Revson——Joue —Towsarpien

G 12/2022
F 08/2022
E 04/2022
D 12/2021
Cc 08/2021
B 04/2021
A 11/2020

The following list of changes are made in this revision.
» Updated section 2.4. DDR Controller.

The following list of changes are made in this revision.
» Updated section 2.4. DDR Controller.

The following list of changes are made in this revision.
« Updated Introduction.
* Updated 2.1. FIC Interface.

The following list of changes are made in this revision.

» Updated Introduction.

* Updated 2.1.1. BFM Commands for DMA type transfers.
* Added note to 2.1. FIC Interface

e Added section 2.6. L2-LIM Access

This document is released with Libero SoC Design Suite v2021.2
without changes from v2021.1.

The following list of changes are made in this revision.
» Updated Figure 1.
* Updated Figure 2-5.
* Updated Table 2-4.

Document converted to Microchip template. Initial Revision.

© 2022 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003088G-page 32

Libero® SoC v2022.3

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

* From North America, call 800.262.1060

» From the rest of the world, call 650.318.4460

» Fax, from anywhere in the world, 650.318.8044

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

+ Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 33
and its subsidiaries

http://www.microchip.com/support
https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

Libero® SoC v2022.3

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is secure when used in the intended manner, within operating
specifications, and under normal conditions.

* Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test,

and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeelLoq, Kleer, LANCheck, LinkMD,
maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are
registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS,
Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM,
MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 34
and its subsidiaries

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

Libero® SoC v2022.3

ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-1606-1

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 35
and its subsidiaries

https://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office Australia - Sydney India - Bangalore Austria - Wels

2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
www.microchip.com/support China - Chonggqing Japan - Osaka Finland - Espoo

Web Address: Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820
www.microchip.com China - Dongguan Japan - Tokyo France - Paris
Atlanta Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20
Duluth, GA China - Guangzhou Korea - Daegu Fax: 33-1-69-30-90-79
Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching
Fax: 678-957-1455 China - Hangzhou Korea - Seoul Tel: 49-8931-9700
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan

Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 49-2129-3766400
Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn
Westborough, MA China - Nanjing Malaysia - Penang Tel: 49-7131-72400
Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe
Fax: 774-760-0088 China - Qingdao Philippines - Manila Tel: 49-721-625370
Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich
ltasca, IL China - Shanghai Singapore Tel: 49-89-627-144-0
Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44
Fax: 630-285-0075 China - Shenyang Taiwan - Hsin Chu Germany - Rosenheim
Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560
Addison, TX China - Shenzhen Taiwan - Kaohsiung Israel - Ra’anana

Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Tel: 972-9-744-7705
Fax: 972-818-2924 China - Suzhou Taiwan - Taipei Italy - Milan

Detroit Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Tel: 39-0331-742611
Novi, Ml China - Wuhan Thailand - Bangkok Fax: 39-0331-466781
Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Italy - Padova
Houston, TX China - Xian Vietnam - Ho Chi Minh Tel: 39-049-7625286
Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen
Indianapolis China - Xiamen Tel: 31-416-690399
Noblesville, IN Tel: 86-592-2388138 Fax: 31-416-690340
Tel: 317-773-8323 China - Zhuhai Norway - Trondheim
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388

Tel: 317-536-2380 Poland - Warsaw

Los Angeles Tel: 48-22-3325737
Mission Viejo, CA Romania - Bucharest
Tel: 949-462-9523 Tel: 40-21-407-87-50
Fax: 949-462-9608 Spain - Madrid

Tel: 951-273-7800 Tel: 34-91-708-08-90
Raleigh, NC Fax: 34-91-708-08-91
Tel: 919-844-7510 Sweden - Gothenberg
New York, NY Tel: 46-31-704-60-40
Tel: 631-435-6000 Sweden - Stockholm
San Jose, CA Tel: 46-8-5090-4654
Tel: 408-735-9110 UK - Wokingham

Tel: 408-436-4270 Tel: 44-118-921-5800
Canada - Toronto Fax: 44-118-921-5820

Tel: 905-695-1980
Fax: 905-695-2078

© 2022 Microchip Technology Inc. User Guide DS50003088G-page 36
and its subsidiaries

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Table of Contents
	1. Creating a new PolarFire SoC Project
	2. Simulation Flow
	2.1. FIC Interface
	2.1.1. BFM Commands

	2.2. Interrupts
	2.2.1. F2H Interrupts
	2.2.2. H2F Interrupts

	2.3. User Cryptoprocessor
	2.3.1. Fabric Mode
	2.3.2. MSS Mode
	2.3.2.1. DXI: Direct Transfer Block In
	2.3.2.2. DXO: Direct Transfer Block Out

	2.3.3. Shared MSS Mode
	2.3.4. Shared Fabric Mode

	2.4. DDR Controller
	2.5. QoS Parameter
	2.6. L2-LIM Access

	3. Revision History
	Microchip FPGA Support
	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

