Job Manager User Guide :
A8\ MicrocHIP

I nt I'Od u CﬁOn (Ask a Question)

The Job Manager tool is a part of the Secured Production Programming Solution (SPPS) ecosystem that consists
of the Libero®, Job Manager, and FlashPro Express applications as well as User HSM servers (U-HSM) and
Manufacturer HSM servers (M-HSM).

This user guide describes how to use the Job Manager to organize manufacturing flow as described in the
Secure Production Programming Solution (SPPS) User Guide.

The Job Manager is primarily intended for use by the Operation Engineer (OE) who is responsible for the
manufacturing process organization and security.

The current version of the Job Manager is based on the Tcl interface running in command-line mode. The Job
Manager supports the creation of:

* Programming Jobs for the regular production programming flow (non-HSM manufacturing flow in this
document)

+ Programming Jobs for the secured production programming flow (HSM-based manufacturing flow in this
document)

+ Bitstream files in various formats (STAPL, DAT, SPI, and so on) for use by third-party programming tools
(non-HSM flow)

Programming Jobs created by the Job Manager can be programmed into the device using FlashPro Express (see
the FlashPro Express User Guide) or In House Programming (IHP).

Programming bit stream generation supported by the Job Manager is based on design information imported
from Libero. eNVM/sNVM data and security settings can be modified in the Job Manager project, which allows
update of areas such as M3 firmware image and enforcement of security policies.

The Job Manager allows generation of the programming bitstreams outside the Libero flow, eliminating the
need for the OE to handle the design using Libero, obtain design level Libero licenses, and address design
migration to newer versions of Libero.

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-EC96DE03-40C0-44F0-8D55-29B2A6682954&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Introduction&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/flashpro_express_ug.pdf
https://microchip.com

Table of Contents

INEFOAUCTION. ..ttt ettt st et b et b et b et e b et e h et e bt e e bt e bt s st snebe s neanen 1
T MaNUFACTUNING FIOWS. ..ottt ettt ettt b et b e b e s bbb e bt e b et e b et e bt st e bt st e st st ese st enesteneenan 3
1.1, HSM-based ManufacturiNg FIOW......cc.cciiiiiiiiirinenenenesiesesie sttt ettt sbe st st st st st e sbesbensensensenaennons 3
1.2, NON-HSM ManUFaCtUMING FIOW....cc.ciiiiiiiirieirietreetestee ettt ettt sa bbb bbb nee 3
2. HSM Parameter CONTIGUIAtION.......ccvcuvirieirieeirieerteeieestesestetesaeseste e ssesessesessesessesassesessesessesessesessenessenseseseesensesenessenees 4
B KYSEE Fl..iitieteete ettt ettt b et b et b et bbbt b bbb bt b et b e b eheshe btk ene b et e st b et e be e benea 5
4. ProgrammMiNg Data....cococi oottt sttt s et sae et e s bt e bt s st e s bt et e sh e et e s ae e b e e st e s besa e e s bt e e e s b e et e e Rt e nbe et e nreensenanennes 6
4.1. Create Programming Data from JDC File........ccveirieirieiinieinieirieirietsie ettt sttt sb ettt sbe e 6
4.2, eNVM and SNVM UPAALE.....cciiiiiieiririniniiniesiestesiesie sttt sttt ettt ettt sse s st ssessesbesbessesbessessessensensensensensenes 6
4.3, Key OVerwrite (NON-HSM FIOW).....cccciviiriiririinienienienieietesteteesesesessessessessessessessessessessensensensessessesessessessessesses 6
4.4, SECUNILY OVEIWIIEE. c.eiuiitiitiitetetetetete ettt ettt b et s b e bbb bt e et e et e e e bt e bt e bt s b e sbesbesbesbesbesbesaenennes 6
A5, BitStream INitialiZatioN.. ..ottt ettt b et b bbb b e bt be s b s 7
5. PrOSIaMIMING JOD ..ottt ettt sttt a bbbt s b st s b e st s b et b et e b et s b et ebesesbeneebenesbeneebeneenen 10
5.1. HSM Programming Or DeBUE JOD.....cuiiiiiiieeee ettt 10
5.2. Creating a FlashPro Express or SMartDebUE JOD........cviriririrenenenenienienieieteeeeee e siesse s st sseneens 10
6. EXPOIT SPI DIFECEONY vttt ettt ettt ettt s bt s b s bt s b e s bbb e b et et et et e st e bt e bt e bt s b e s b e s b e s b e st e b et e b enbeneeneeneeneas 13
7. KEY ROTATION.....iititiieieietctctetc ettt ettt ettt b e s bbb bbb e b e st e b e b e e et et e st ebeebesbesbesbesbesreas 14
7.1, MaSter BitSTream JOD FIOW.... ..ottt ettt et re s tr e et e ebe e be e sabeesaae e beeebeesaseenseenneessneens 14
7.2, Update BitStream JOD FIOW.....coiviriririiieicieicteeestsesese sttt ettt ettt sb e s b sttt ense s enaenaen 14
730 HSIM FIOW. .ttt et b bbbt b bbbt be s b bt s b e st s b e st b et sb et et et ebenesbenesbeneas 14
T4, NON-HSM FIOW..uitiiiiiiitiietitet sttt ettt sttt et st b et b etk stk et e bt e bt e bt st ebe st e st sbe st sbenesbe st sbeneebenesbens 15
7.5. Key Rotation BitStream FileS........ccoiriririninirenierieresiestet ettt ettt sb s b st s sttt ae e e e e et ens 15
7.6, EXPOIT SPI DIF@CLOIIES. ..eeuieeutetieiierttete sttt sttt sttt e st et s et s e e s bt et she et e s st e s beentesseebesaeensesanesbeeasesneensesnnennes 16
B Tl INEITACE .. ittt et b bbbt b et e bt btk bk b bbbt b et h et e bt b e bt bene b ene st eneeaeneetn 17
B APPIICALION. .ttt ettt b e et b e bbb bt h etk e e b e ebe e ebene 17
8.2, KeySet MaNAZEMENT....coiiiiiiiitiii ittt b e st bbb bbb b e an e 17
8.3, PrOjJECt MANAZEIMENT...cuieiiriertiteietetetete ettt ettt st sttt st sttt et et e st e st e bt e bt s bt s bt s bt s b e s b e s besbenae s ebenaeneeneenens 18
8.4, ProOgrammMUNG Data.....ccceecerieieiiierieseerie ettt ete sttt sttt st s et s et et e st e b e s st e s bt e sseshe e bt s st e nbeenbesbeenbesneeneeneereeaee 18
8.5, PrOZramMIMING JOD ..ottt ettt ettt sttt sttt b et s bbb et e e b e e sbenesbene 24
9. RefErenNCEd DOCUMENES.ciiiririeueitirieteteitt sttt ettt ettt ettt b bt b bttt bbbttt s b b b et s bbbt st b b e st e s etebenentas 28
TO. REVISION HISTOIY ittt ettt s b e b bbb b e b e e e e e e et e bt e bt s bt s bt s b e s b s b et e b e b et ennes 29
MiICTOCHID FPGA SUPPOIM...utiiiiiiriieieriententestestestestestesteste sttt et et e st ssessessessessessessessessensensensensensessessesessessessessessessensensensensenes 30
MICFOCHIP INTOIMNATION...c.citiieiiieictett ettt ettt b etk s ekt b et e bt ebe b ebe st e bt st ebe st ene st enesbenesbenenan 30
TrAAERMIAIKS. .ttt ettt b et s bt s bbb e e b e b b e b e b e e bR b e s R bR bt nenenee 30
LEEAI NOTICR. ettt ettt ettt st b et b et bt b ettt e b e st e b et e b et e b et e b et e b e b e b et e b et e b et e b e st e bt sbene b ene st e e e 30
Microchip Devices Code ProteCtion FEAtUIE.........cciveirieirieirietrietstee ettt ste sttt sbe e sbe s b e b st e saebesaebenaenens 31

@ MICROCHIP

1. Manufacturing FIOWS (s auestion)
The following sections discuss the different types of manufacturing flows.

1.1. HSM-based Manufacturing FIOW (s« auestion)

The HSM-based manufacturing process uses device-supported security protocols. For more
information, refer to the Secure Production Programming Solution (SPPS) User Guide.

The U-HSM allows the user to generate and use various encryption and pass keys. Cryptographical
operations requiring those keys are executed inside the security boundaries of the HSM Module:

Operation support for the HSM-based Manufacturing Flow is as follows:

+ Keyimport, generation, and use under protection of the U-HSM and the M-HSM
+ Initial secure key injection into the device using the Authorization Code protocol
+ Secure data transmission between the U-HSM and the M-HSM

+ Overbuild protection

+ Device authentication

« U-HSM verification of cryptographically sealed certificate of conformance (CoC) from the design
programmed into the device

+ U-HSM verification programming job end certificates
+ Initiator and Upgrade programming job types

+ eNVM and sNVM client update

+ eNVM client selection

+ Security overwrite

+ Secure debug with SmartDebug tool

1.1.1. HSM Server Requirements (aska question)
In the HSM-based Manufacturing Flow, the Job Manager is configured to work with the U-HSM
to generate the HSM Programming Job, and HSM Programming Jobs require the M-HSM for job
execution. For more information about HSM servers, refer to the Secure Production Programming
Solution (SPPS) User Guide. For information about installation, refer to the User HSM Installation
and Setup User Guide for the U-HSM and the Manufacturer HSM Installation and Setup User Guide
for the M-HSM.

1.2. Non-HSM Manufacturing FIOW (aska question)

Non-HSM Manufacturing Flow support by the Job Manager allows bitstream file and programming
job generation outside of the Libero tool. The Job Manager supports the following operations for
non-HSM Manufacturing Flow:

+ Initial key loading via KLK-protected bitstreams

+ Generate UEK1/UEK2/UEK3 encrypted update bitstreams
+ eNVM and sNVM client Update

+ eNVM client selection

+ Key value overwrite

+ Security overwrite

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-88BC980D-FB18-4716-8478-2D0EE00BEC94&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Manufacturing%20Flows&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-51BC8F7E-A940-4C33-A558-F2FBAE1939FA&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM-based%20Manufacturing%20Flow&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-5B0DC6C5-15C4-455A-888E-8FDC3F0426C5&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Server%20Requirements&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/user_hsm_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/user_hsm_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/man_hsm_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-247DF258-0B5E-429A-AA1A-ED4A5624E32D&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Non-HSM%20Manufacturing%20Flow&devices=

2. HSM Parameter Configuration (s aueston

To use Job Manager in the HSM flow, U-HSM parameters must be set. These parameters are stored
in the user-level DEF file and automatically loaded for any new or existing Job Manager project.

U-HSM configuration data specifies:

+ IP address of the U-HSM server

+ U-HSM UUID assigned by Microchip

* U-HSM Master Key UUID

+ Default location of the keyset repository (see the Libero SoC Design Flow User Guide)

+ M-HSM UUID assigned by Microchip

The set _hsm params Tcl command is used to configure HSM. See Tcl Interface for details.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-0D7E0D43-BC80-4DD0-8D43-5CDC640D45A1&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Parameter%20Configuration&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf

3 . Keyset Fi I e (Ask a Question)

The keyset file is used in the HSM flow only. It contains U-HSM generated keys encrypted with the
Master Key of the U-HSM. New keyset files can be generated randomly by the HSM, derived from
the existing keyset files, or created from the imported plain text values.

Keyset files are stored in the keyset repository, and can be shared among different Job Manager
projects. The repository is configured through HSM parameters (refer to the FlashPro Express User
Guide).

Keyset files contain the following keys:
« Ticket Key that encrypts all keys in the keyset file.
- Ticket Key is protected by the HSM Master Key.
- Keyset file contains HSM Master Key UUID to help identify the origin of the file.
+ Encryption keys: UEK1, UEK2, UEK3
+ Pass keys: UPK1, UPK2, DPK
+ Base keys for deriving per-device key values for UEK1/UEK2/UEK3/UPK1/UPK2/DPK

For more information about SPPS key management, refer to the Secure Production Programming
Solution (SPPS) User Guide.

A keyset file is generated outside the Job Manager project and is associated upon creation of a new
Programming Data entry (refer to the User HSM Installation and Setup User Guide).

The create keyset Tcl command is used to manage keyset files. See Tcl Interface for more
information and keyset generation scenarios.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-FA65E854-D3BE-4A5E-9D59-1E8DA84DC48A&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Keyset%20File&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/flashpro_express_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/flashpro_express_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/user_hsm_ug.pdf

4. Programming Data (asa question)

Programming Data entry is created from the design information imported from Libero in a Job Data
Container (JDC) file (see the Libero SoC Design Flow User Guide for details about JDC Export for

a Libero project). Programming Data contains all information required for bitstream generation in
the HSM flow and non-HSM flow. A bitstream that is initialized for non-HSM flow can be exported
directly from Programming Data into a bitstream file in a format selected by the user.

The following design data modifications can be done by the user within Programming Data:

+ One or more eNVM or sNVM clients can be updated with an image loaded from external data
files.

+ Design security can be overwritten from the external Security Policy Manager (SPM) file from
Libero.

+ In non-HSM flow, plain text values of the encryption and pass keys can be changed. In the HSM
flow, all key values are used from the HSM-protected keyset file.

A Job Manager project can have one or many Programming Data entries to support programming of
multiple Microchip devices on the same board.

The following sections provide information about the creation and modification of data in
Programming Data entry.

4.1. Create Programming Data from JDC File (asz auestion)

New Programming Data is created using the new prog data Tcl command. It must be created
within an existing or new Job Manager project.

When creating a new Programming Data entry, design data is copied from the external JDC file
within the current project. After this step, the external JDC file is no longer used.

In the HSM flow, all keys are generated and controlled by the U-HSM. Therefore, in this flow, a

new Programming Data must be associated with a keyset file created as shown in Keyset File.

All cryptographic operations involving protected keys are executed inside the HSM module. For
example, a Master bitstream is generated using the U-HSM and programmed via the Authorization
Code protocol using the M-HSM.

4.2. eNVM and SNVM Update (Ask a Question)

This is an optional step that allows the user to modify one or more eNVM or sNVM clients found in
the design loaded into the Programing Data. Refer to the Secure Production Programming Solution
(SPPS) User Guide for the use model definition.

To add a client update, the design in the Programming Data entry must have an eNVM component
that already contains a target client. The size of the update data must be equal to or smaller than
the client size. See the set _envm update and set_snvm update Tcl commands in Tcl Interface for
details.

4.3. Key Overwrite (Non-HSM Flow) (aska question)

This feature applies to the non-HSM flow and allows the user to modify plain text key values for
the keys coming from Libero as a part of the design security settings. New key values can be set
for UEK1/UEK2/ UEK3/UPK1/UPK2/DPK using the set key Tcl command. Key overwrites can be
reverted using the remove key Tcl command.

4.4- Secu rity overwrite (Ask a Question)

Security overwrite ignores security settings imported into the Programming Data entry from Libero
(via the JDC file) and uses settings imported from the SPM file on disk. After import, the external
SPM file is no longer used by the Job Manager.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-F98BC431-42AB-4FCC-9C8C-004277BF6E90&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Programming%20Data&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-852738E6-4892-4117-AC31-929F16423144&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Create%20Programming%20Data%20from%20JDC%20File&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-8FD59B61-D4B8-44D0-B875-C513C3C59040&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=eNVM%20and%20sNVM%20Update&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-B2F59F83-912F-4ABB-8F5F-1A5D51968ADD&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Key%20Overwrite%20%28Non-HSM%20Flow%29&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-2B5A7D4B-567C-41A1-AB23-3D965548F07F&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Security%20Overwrite&devices=

Security overwrite is available in HSM flow and non-HSM flow. In both flows, security policy is used
from the overwrite, while key values follow these rules:

HSM Flow:
+ Key values are always used from the keyset file.
Non-HSM Flow:

+ Key values are used from the security settings of the security overwrite.

+ For keys that were overwritten using the set key command (see Key Overwrite (Non-HSM
Flow)), the key overwrite value is used.

For details, see the set security overwrite and remove security overwrite Tcl commands
in Tcl Interface.

4.5. Bitstream Initialization (asa auestion)
Bitstream initialization allows the user to setup bit stream generation parameters for use during:
+ HSM job export
+ Non-HSM job export
« Export of a programming bit stream in non-HSM flow

The bit stream can be initialized for use in the HSM programming flow and non-HSM programming
flow. For use model details about HSM and non-HSM bitstreams, refer to the Secure Production
Programming Solution (SPPS) User Guide.

Programming Data can have one or more bit stream entries that can be used by the same or
different programing jobs.

Bitstream initialization is done with the init bitstream Tcl command.

4.5.1. HSM Flow (Ask a Question)
The following sections describe how to initialize and use programming bitstreams for various
situations in the HSM flow. Because all keys in the HSM flow are protected by the HSM, the U-HSM
must generate bitstreams for all cases described below.

Initiater Bitstream

The Initiater bit stream in HSM is designed to program initial security and all other user-selected
device features in an untrusted environment. Secure key loading is achieved using the device-
supported Authorization Code protocol. Refer to the Secure Production Programming Solution
(SPPS) User Guide for more information.

The Initiater bit stream can be generated to program project or per-device UEK1/UPK1/UEK2/UPK2/
UEK3/DPK values.

Project keys are inserted into the bit stream from the keyset file upon bit stream generation.

Per-device keys are generated and infused into the programming bit stream by the M-HSM during
device programming. Per-device key value is derived from respective base keys in the keyset file
and device device serial number (DSN). Per-device protocol and key types are specified with the
init bitstream Tcl command parameters.

The Initiater bit stream programs security settings imported into Programming Data from Libero or
according to SPM overwrite, if any.

Important: Due to security policy, after the initial key loading, programming
actions such as ERASE and VERIFY require HSM support to unlock device security.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-AC75F06B-DF1E-4A82-B3BF-C36BE474B68A&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Bitstream%20Initialization&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-7F37DC12-4A0A-4781-A03A-0E282B5DDD25&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Flow&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf

Security settings programmed into the device can only be changed with the ERASE
action. The ERASE action does not erase content of the eNVM or sNVM. eNVM and
sNVM memory is fully accessible after security settings have been erased.

/\WARNING

UEK1/UEK2/UEK3 Update Bitstream

This type of bit stream is used for reprogramming Fabric and/or eNVM/sNVM depending on device
type. The security component cannot be reprogrammed with this file type. This bit stream can be
used if the device already has security programmed.

UEK1/UEK2/UEK3 Project Keys, No Security Lock

In this case, all devices in the project have the same UEK1, UEK2, or UEK3 values, and target device
feature programming is allowed without FlashLock/UPK1 match. The Job Manager can generate a
stand-alone programming file or a non-HSM programming job that does not require the M-HSM
during programming.

UEK1/UEK2/UEK3 Project Keys, Security Locked

If the target device feature programming is locked, the M-HSM must perform a secured unlock of
the device, because the plain text value of the lock key cannot be used in an untrusted environment.
This type of bit stream can be used in an HSM programming job. UPK1 unlock is performed securely
via the OTPK protocol. For more information, refer to the Secure Production Programming Solution
(SPPS) User Guide.

UEK1/UEK2/UEKS3 Per-Device Keys, No Security Locks, DSN is Known

If UEK1, UEK2, or UEK3 are per-device keys, target features are not locked, and DSN for the
target device(s) is known, the user has an option to generate a device-specific programming bit
stream that does not require the M-HSM during production. The bit stream can be exported

as a stand-alone bit stream file or a non-HSM programming job. In either case, DSN must

be provided in the export bitstream Tcl command during bit stream file generation or in
the add microsemi device Tcl command that adds target devices to the chain inside the
programming job.

UEK1/UEK2/UEKS3 Per-Device, All Other Cases

For all other cases related to per-device UEK1/UEK2/UEK3, the M-HSM and HSM programming job
must be used. If target device features are locked by per-device UPK1, UPK1 unlock is performed
securely via the OTPK protocol. For more information, refer to the Secure Production Programming
Solution (SPPS) User Guide.

4.5.2. Non-HSM Flow (Ask a Question)

In non-HSM flow, the keyset file is not used. All key values are used from the Libero design security
setting. There are two mechanisms to overwrite the user-defined design security keys (UPK1, UPK2,
UEK1, UEK2, UEK3, and DPK):

1. Security Overwrite—The security setting and key values set supersede the original Libero
settings.

2. Key Overwrite—The key values set supersede both the Libero and Security Overwrite setting.

The following sections describe non-HSM bitstream types that can be generated for production
programming in a trusted environment.

Trusted Facility Bitstream

This bitstream type can program Fabric, eNVM, and non-authenticated plain text SNVM clients. The
entire bitstream is encrypted with the KLK encryption key.

Master Bitstream

@ MICROCHIP

https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-A3591582-3511-4E1E-87B7-6D446C3BDD18&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Non-HSM%20Flow&devices=

Similar to Trusted Facility, but also programs security and supports all types of SNVM clients. After
custom security is programmed, all Microchip factory default key modes, including KLK, DFK, KFP,
and KFPE key modes as well as User ECC keys (KUP and KUPE), become disabled.

Note: Per security policy, programming of UEK1 or UEK2 will program the UPK1 or UPK2 passkeys,
respectively, and lock the security segment. As a result, the ERASE and VERIFY actions in generated
bitstream files or programming jobs will contain plain text UPK1/UPK2 values. This is required

to unlock security segments for the programming actions when using the non-HSM flow (the HSM-
based flow uses encrypted one-time passcodes).

UEK1/UEK2/UEK3 Update Bitstream

This bitstream type can reprogram Fabric and/or eNVM/sNVM device features. If the target device
programming is protected by FlashLock/UPK1, plain text values of UPK1 are included in the
exported bitstream file/programming job. when using the non-HSM flow.

4.5.3. Export Programming Bitstream File (aska question)

Export of the programming bitstream file is available in non-HSM flow only. Export is handled by the
export bitstream file Tclcommand and can be performed in all supported programming file

types.

Specifying the optional DSN parameter is applicable only for situations explained in the Non-HSM
Flow section. The exported bitstream file is created in a user-specified location.

Important: Job files designed for SmartFusion® 2, IGLOO® 2, and PolarFire®
devices, from the latest versions of Libero, are compatible with HSM Server v12.6.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-DDB84E30-E0C1-4B7F-AA24-0EAC086ACB2F&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Export%20Programming%20Bitstream%20File&devices=

5. Programming JOb (aa question)

A Programming Job is a set of data used by programming systems for device programming in HSM
and non-HSM flows.

The current SPPS ecosystem supports FlashPro Express and IHP job types.

FlashPro Express can program HSM and non-HSM jobs (refer to the FlashPro Express User Guide),
and IHP supports the HSM job type only.

A Programming Job contains the following data:

+ Job type (FlashPro Express or IHP)

+ Job origin

+ Bitstream(s) for various programming actions (PROGRAM, ERASE, and VERIFY)

+ Hardware setup information - for FlashPro Express job type
- Type of hardware interface (JTAG in this version of the Job Manager)
- Configuration

Job device(s) - includes basic device information
+ Data for HSM flow only
- M-HSM UUID

- U-HSM UUID

+ Encrypted Job Tickets authorizing programming actions and overbuild protection under
control of the HSM

+ Encrypted keys and security protocol data required by HSM protocols
5.1. HSM Programming or Debug Job (s« auestion)

A programming or debug job can be set up for execution in an untrusted environment. In this case,
the M-HSM protects cryptographic key material and other sensitive data required by device security
protocols during the manufacturing processes.

HSM data is added to the Programming or Debug Job with HSM Task(s). See HSM Tasks for details.
A Programming Data entry is created in the Job Manager project using the new prog job Tcl
command.

5.2. Creating a FlashPro Express or SmartDebug Job (asaauestion)
After creating a FlashPro Express or SmartDebug job, the user specifies the type of hardware setup:

JTAG Chain - supported in the current release of the Job Manager

5.2.1. Configuring a JTAG Chain (aska question)
The following device types can be added to a JTAG chain:

* Microchip device targeted for programming

+ Microchip bypass device not targeted for programming
- Non-Microchip bypass device

Each device has a user-defined name that is unique within the JTAG chain. Microchip devices can
be programmed using a bit stream generated by a Programming Data entry or by using existing
programming bit stream files (STAPL) loaded from disk.

Adding a Microchip Device for Programming by Generated Bitstream

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-728029E0-3AC3-460A-8426-9ABFF38A1F4C&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Programming%20Job&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/flashpro_express_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-D714154A-98E8-4B0D-BD6F-7BB114CB63A6&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Programming%20or%20Debug%20Job&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-A4CAEB4B-478D-4219-964C-9D68780F14EC&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Creating%20a%20FlashPro%20Express%20or%20SmartDebug%20Job&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-2C7700A2-D208-4DBB-B4F3-7E66D7D72E6F&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Configuring%20a%20JTAG%20Chain&devices=

5.2.2.

5.2.3.

If a Microchip device is programmed by a bit stream generated from Programming Data, the
bit stream must be specified in the Programming Data and bit stream name parameters in the
add microsemi prog device Tcl command (see Tcl Interface for details).

The "DSN" parameter is used in the HSM flow to create a device-specific update programming
file, see UEK1/UEK2/UEK3 Update Bitstream. Actual bit stream is generated while exporting the
programming job, see HSM Task Export.

Adding a Microchip Device for Programming by Existing Bitstream File

A Microchip device can be programmed using the existing bit stream file generated outside the Job
Manager.

Important: If an external bit stream file has been loaded in the device, it cannot
be programmed using HSM, and tickets cannot be created.

Use the add microsemi prog device Tcl command pointing to the target bit stream file on disk
specifying the path to the file with the "bitstream_file" parameter.

Adding a Microchip Bypass Device

A Microchip bypass device can be added by specifying the device name or pointing to the device
programming file.

Refer to the add microsemi bypass device Tcl command for more information.
Adding a Non-Microchip Bypass Device

A non-Microchip device can be added to the JTAG chain with the
add non microsemi bypass device Tcl command.

JTAG bypass parameters can be specified either by pointing to the BSDL file
accepted by the command or by explicit parameter specification. Refer to the
add non microsemi bypass device Tcl command for more information.

Export of Non-HSM Programming Job (ask a uestion)

A non-HSM Programming Job is exported from the Job Manager with the export prog job Tcl
command. All bitstreams generated from Programming Data entries are created during command
execution.

Important: A Programming Job that has one or more HSM tasks is considered to
be HSM type and cannot be exported using the export prog job command. For
more information, see the HSM Tasks section.

HSM Tasks (Ask a Question)

The HSM task in the HSM flow allows flexibility in organizing the manufacturing process. It is
possible to utilize multiple Contract Manufacturers simultaneously, or the entire manufacturing
volume can be split onto smaller chunks for overbuild protection. For example, after creating a
Programming Job, the OE can create and export an HSM Task for each manufacturer in production.

HSM tasks add HSM data to the Programming Job. For each HSM task, the user creates job tickets
and specifies programming actions for each ticket. Overbuild protection and other protocol-specific
information is specified during ticket creation.

For more information about the HSM use model and flow description, refer to the Secure
Production Programming Solution (SPPS) User Guide.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-F6BD1F20-7F2F-4ACD-9502-A1D566F385B0&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Export%20of%20Non-HSM%20Programming%20Job&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-20D15AEE-8D8F-4ED8-91BC-50545020B65A&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Tasks&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf

Job Tickets

The HSM Task Ticket (Job Ticket in this document) is used to enforce security policies on the
manufacturing side and encrypt sensitive information used by device security protocols.

A Job Ticket is created per device in the Programming Job. Each device can have one or more ticket.
The Job Ticket is created per the user-selected programming action.

A new Job Ticket is created with the new _hsmtask ticket Tcl command. Themax device
parameter is used to limit the number of devices a programming action can be executed on.

Job Request

A Job Request is exported from the Job Manager Project after creation of all tickets within the HSM
Task. The Job Request is then sent to and processed by FlashPro Express or IHP using its M-HSM.

AJob Request is created with the hsmtask m request Tcl command.
Job Reply

A Job Reply returns ticket generation information created by the FlashPro Express/IHP. This
information is cryptographically bound to the physical M-HSM/U-HSM module that processed the
Job Request. After performing this handshake protocol, the HSM Job exported from this HSM
Task can only be used with that particular module. This prevents HSM Task replication on the
manufacturing side.

A Job Reply is generated by FlashPro Express or IHP and can be imported into the requesting U-HSM
Task with the hsmtask m reply Tcl command.

HSM Task Export

An HSM Task (HSM Job in this document) can be exported with the export hsmtask Tcl command.
This command executes the part of export done during the non-HSM job export and adds HSM-
specific information to the job export container. This data includes job tickets, encryption keys,
protocol data, and other HSM-specific information. The HSM job can only be exported after
importing the Job Reply.

Job Status

Job Status can be generated by FlashPro Express or IHP during job execution or after ending the job.
A Job Status file is generated and sent to the customer.

An HSM Programing Job being executed on the manufacturing side can be ended when all target
devices are programmed, or the job can be terminated at any time.

The Job Manager uses Job Status to:

+ Validate job end status, which is cryptographically protected proof that the job has ended and
can no longer execute programming actions controlled by its tickets

+ Display the number of devices that can be handled by each ticket
+ Ensure that the correct bit stream is programmed into each device by validating the CoCs.

@ MICROCHIP

6- Export SPI Directory (Ask a Question)

The Job Manager can be used to create the SPI directory used by SmartFusion” 2/IGLOO" 2 devices
during auto-update and programming recovery. The SPI directory contains information about
golden and update programming bitstreams placed by the user into SPI Flash.

The SPI directory is created with the export spi directory Tcl command. It does not require an
existing Job Manager project.

The version number for the golden and update bitstreams can be entered manually or by providing
previously generated SPI files. The user also needs to provide addresses for both images in the final
Flash memory.

For more information about using the SPI Flash directory, refer to the Libero SoC Design Flow User
Guide.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-7CC7D91A-893B-4404-925B-3382B6A13703&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Export%20SPI%20Directory&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf

7.1.

7.2.

7.3.

Key ROtaﬁOn (Ask a Question)

Key rotation flow enables the user to securely update user keys (UPK1, UEK1, UPK2, UEK2, DPK and
UEK3) in SmartFusion 2 and IGLOO 2 devices.

The key rotation flow is as follows:

1. The Libero SoC tool is used to create the design and export the JDC file.
2. Job Manager uses the JDC file to generate the master and key rotation update bitstreams.

Program devices with initial master bitstream that does not lock user key segments so it can
update user keys in future.

4. Program key rotation bitstreams in sequence, which updates the user keys.

Master BitStream JOb FIOW (Ask a Question)

Users can generate the Master Bitstream Job for Hardware Security Modules (HSM) or Non-HSM
flow. The parameter enable key rotationininit bitstream Tcl command is used to allow
updating user keys in future.

Note:
When the key rotation is enabled, the master bit stream generated does not lock User Lock-Bit, User
Key1, and User Key2 segments to allow user keys to be updated in the future.

When key rotation is enabled, Job Manager checks for the following:

+ If Design version is set in JDC file.
+ Verify that no permanent security setting is selected.
« If more than one keysets are being programmed.

Note:
The Key Rotation Flow is not supported for UNIQUE KEY protocol.

Update Bitstream Job FIOW (aska question)

Using Job Manager you can generate a stand-alone bit stream file (STAPL/SPI/DAT), which will
update the user keys that are already programmed on device using the Master Bitstream Flow.
Since multiple Key Sets need to be updated, there will be multiple key rotation bit stream files (one
for each key set). The multiple key rotation bit stream files need to be programmed in a specific
order. The order in which they need to be programmed is embedded as part of the file name.

Users can specify the new key values, which are used to replace old keys programmed in the device
using the set new keys for rotation Tclcommand. Depending on whether HSM is being used,
the user specifies the key values:

+ Ifitis an HSM flow, then the user must create a new keyset file with new keys values and use the
keyset file as input to the Tcl command.

« Ifitis a non-HSM flow, then the user must specify new keys values, which must be updated in this
Tcl command. Any key that is not specified will retain its original value.

User can use the init bitstream Tcl command to initialize bit stream that allows users to specify
the key rotation parameters.

HSM FIOW (Ask a Question)

If the Master Bitstream Flow was run using HSM, then in the Update Bitstream File Flow, user
must create a new key set using the create keyset Tcl command and set the new keyset file
asinputinthe set new keys for rotation Tclcommand. User then specifies the bit stream
type as KEY_ROTATION in the init bitstream Tcl command and then exports the file using the

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-C49E29C8-A8EF-4088-A975-334586BE4C88&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Key%20Rotation&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-DD889701-AE35-4123-BD02-CFD21A208D69&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Master%20Bitstream%20Job%20Flow&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-1AD9C3CD-81E1-4D3D-AB5B-AD402E360BF6&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Update%20Bitstream%20Job%20Flow&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-BC42DAD0-340F-408B-9F07-9F8B814336EF&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Flow&devices=

7.4.

7.5.

export bitstream file Tclcommand. This generates multiple bit stream files, one for each user
key set.

set new keys for rotation -data name "design data name" \
[-keyset file "keyset file name"]

init bitstream -data name "design data name" \
-bitstream type "bitstream name" \
-bitstream type "KEY ROTATION" \
[-auto _inc design version] \
[-first keymode "UEK1l | UEK2 | UEK3"]

export bitstream file -data name "design data name" \
-bitstream name "bitstream name" \

-formats "[STAPL | SPI | DAT]" \
-export path "export file"

Non'HSM FIOW (Ask a Question)

If the Master Bitstream Flow was run without HSM, then in the update bitstream file flow user
specifies new values for keys via TCL command. Any key that is not specified will retain the
original value (from Master Bitstream Flow). Details about each key is logged while running
set new keys for rotation TCL command.

set new keys for rotation -data name "design data name" \
[-upkl "security key value (UPK1l)"]

\
[-uekl "security key value (UEK1)"] \
[-upk2 "security key value (UPK2)"] \
[-uek2 "security key value (UEK2)"] \
[-dpk "security key value (DPK)"] \
[-uek3 "security key value (UEK3)"] \

init bitstream -data name "design data name" \
-bitstream type "bitstream name" \
-bitstream type "KEY ROTATION" \
[-auto_inc design version] \
[-first keymode "UEK1l | UEK2 | UEK3"]

export bitstream file -data name "design data name" \
-bitstream name "bitstream name" \

-formats "[SPI | DAT]" \
—export path "export file"

Example 7-1. Details About Key Log On Running set new keys for rotationTCL
Command

Info: UEKl will not be updated during key rotation as no new key value is
specified.

Info: UEK2 will not be updated during key rotation as it is absent in JDC.
Info: UEK3 will not change during key rotation as the old and new values are
same.

Info: UPKl will not change during key rotation as the old and new values are
same.

Info: UPK2 will not be updated during key rotation as it is absent in JDC.
Info: DPK will be updated during key rotation.

Note:

Key rotation files for each user key set are always exported (UKS1, UKS2, and UEK3) even if the key
value is same. For example, if user does not specify new key value for UPK1 and UEK1, then original
key values are used to generate the key rotation bitstream, so that it amounts to reprogramming,
same key value.

Key Rotation Bitstream Files (aska question)

When export bitstream file Tcl command is run for KEY_ROTATION bit stream type, multiple
files will be generated, one file for each user key set used in JDC.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-2D65BCE8-762B-4C14-8551-E93DC50F278F&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Non-HSM%20Flow&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-FFA28669-F4E3-43FF-A867-19A8F70301B7&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Key%20Rotation%20Bitstream%20Files&devices=

The key rotation bit stream files are named in the following format:
<user specified filename> rotate {1[2[3} uks{1]2]3}
Where:

* <user specified filename> isthe file name specified in the export path of
export bitstream file command.

* Number after rotate_is the file order in which it must be programmed.
* Number after uks is the user key set that is being modified by this key rotation file.

Example 7-2. Example to Explain the Key Rotation Bitstream File Format

If exported file name is myUpdateProgFile rotate 1 uks3.spi,then
myUpdateProgFile is the same as user specified in the export bitstream file.
rotate 1 denotes itis the first file that needs to be programmed, uks3 denotes
that the SPI file will update User Key Set 3 (UEK3).

If the JDC design has all the three keysets being programmed

and the key rotation bitstream files are being generated

with name myUpdateProgFile then one set of possible key

rotation bitstream files can be: myUpdateProgFile rotate 1 uks3.spi,
myUpdateProgFile rotate 2 uksl.spi, and
myUpdateProgFile rotate 3 uks2.spi.

If the JDC file has Auto-Update enabled, then design version is automatically incremented for each
key rotation bitstream file and info messages log this during bitstream generation.

Example 7-3. Example of Message Log Showing Successful Generation Of Key Rotation Bitstream
File

Info: Successfully generated key rotation bitstream file
'myprogfile2 rotate 1 uks3.spi'. This will update the design version to 1435.
Info: Successfully generated key rotation bitstream file
'myprogfile2 rotate 2 uksl.spi'. This will update the design version to 1436.
Info: Successfully generated key rotation bitstream file
'myprogfile2 rotate 3 uks2.spi'. This will update the design version to 1437.

7.6. Export SPI Directories (askaquestion)

User must export multiple SPI directory files, one for each key rotation bitstream file and use it in
the Auto-Update flow using the export spi directory TCL command.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-BB8F5522-9079-466D-A58A-DBAD3F7C5B57&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Export%20SPI%20Directories&devices=

8- TCI Interface (Ask a Question)

The following sections discuss the Tcl interface.

8.1. Application (Ask a Question)

set_hsm_params -hsm server name <hsm server> -u_hsm uuid <u uuid> - u master hsm uuid
<u _master uuid > -hsm key set dir <keyset dir> - m hsm uuid <m uuid>

* hsm_server - Name or IP address of HSM server machine.

* u_uuid-User HSM UUID.

* u master uuid-User HSM Master UUID.

* keyset dir - Keyset repository location: a directory in which the keyset files will be created or
used.

* m uuid - Manufacturer HSM UUID. This command saves the HSM parameters for the Job
Manager application. This remains in effect until its overridden using this same command.

get software info [-version]
* version - Get the software version info.

This command prints the Job Manager software information.

8.2. Keyset Management (asaquestion)

create_keyset -file <output file name> [-source file

<source file name>] [-kip <token key>]
[-upkl <token key>] [-upkl base <base key>
-uekl <token_key>] [-uekl base <base_key>
-upk2 <token key>] [-upk2 base <base key>

]
]
[]

[—]

[-uek2 <token key>] [-uek2 base <base key>
[

[

]
]
1
]

— [-dpk <token key>]
-dpk base <base key>]
-uek3 <token key>] [-uek3 base <base key>]

* output file name - Name of the new keyset file. Name only, no path. The file is created in the
keyset repository defined by the Job Manager application settings.

* source file name - Optional source keyset file name for key import. The ticket key in this file
must be encrypted with the same U-HSM Master Key.

* token_ key - Optional value of the token keys that will be imported into the new keyset. This
parameter takes precedence over the keys in the source file, if specified. Token key values can
only be specified in plain text format.

* base_ key - Optional value of the base keys (that is, keys are used to derive device-specific token
keys) that will be imported into the new keyset. This parameter takes precedence over the keys in
the source file, if specified. Base key values can only be specified in plain text.

This command creates a new keyset file for the HSM flow tasks. It can create keys for the following
scenarios:

+ Create a new keyset file.
- All keys are randomly generated by the U-HSM.

+ Create a new keyset file with key import.
- Ticket key is randomly generated.

- User-specified keys are imported and protected by the ticket key.
- The rest of the keys are randomly generated and protected by the ticket key.
+ Create a modified copy of the existing keyset file.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-FD8753E1-1846-4C6B-83DC-B3A5FBD3ACFB&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Tcl%20Interface&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-5DE6BB75-5B83-4B1B-9AD7-541602305604&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Application&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-6A870CCC-EEAD-4ED3-8E42-393316109650&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Keyset%20Management&devices=

- New keyset file receives copies of the keys from the source file including ticket key.

+ Ticket is protected by the same U-HSM Master Key.

- User-specified keys will be imported into the new keyset file in place of the keys in the source
keyset file. All imported keys are protected by the ticket key from the source file.

Notes:

1. Because the same keyset file can be shared between different Job Manager projects,
create keyset always creates a new file. It cannot delete, rename, or overwrite existing keyset
files. All such operations should be handled by the user manually.

2. Keys specified in the keyset file always take effect regardless of whether
set security overwrite command is run.

3. UEK3is only available for M2S060, M2GL060, M2S090, M2GL090, M25150, and M2GL150 devices.

8.3. Project Management (asaquestion)

new_project -location <path> -name <file name>
* path - Top level project directory.
* file name - Project file name.

This command creates a new Job Manager project. The project directory can be moved to any other
location on disk as project internally uses only relative paths. If the project already exists, command
will exit with error.

open_project -project <path>
* path - Path to the Job Manager project file (.jprj).
This command opens an existing Job Manager project.
close_project [-save <TRUE |FALSE>]

This command closes the Job Manager project with or without saving it. If project was modified, then
- save option must be specified.

8.4. Programming Data (askaquestion)

8.4.1. Design Import (askaquestion)
new_prog data -data name <name>

—import file <path>
[-keyset file < keyset name>]

* name - Programming data entry name.
* path - Libero design data file (JDC).

* keyset name - Name of the keyset file. File name only. The file will be in the keyset directory as
specified in the Application settings.

This command creates a new Programming Data entry from JDC (design data exported from Libero
project). If keyset parameter is specified, HSM handles all the key management.

8.4.2. Security Modifications (aska question)

set_key -data_name <name>
[-upkl <upkl value>] [-uekl <uekl value>] [-upk2 <upk2 value>] [-uek2
<uek2 value>] [-dpk <dpk value>] [-uek3 <uek3 value>]

* name - Name of the Programming Data.

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-6BA80E1B-572D-4DF9-8DBC-635E24B75437&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Project%20Management&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-E56DD870-72F6-45D3-B804-F05FD6475C91&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Programming%20Data&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-9ECC43DD-41DF-49CD-9531-5323457F357D&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Design%20Import&devices=
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-B720B9C1-9C4C-4303-B7DC-0F1A413803A6&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Security%20Modifications&devices=

* uek* value - New value for the selected encryption key.
* upk* value - New value for the selected pass key.
* dpk_value - New value for the DPK.

This command overwrites key values imported from JDC with the ones specified in the command
arguments.

Notes:
+ This command is applicable to non-HSM flow only.

+ Keys specified by this command always take affect irrespective of whether
set security overwrite command is run.

+ UEK3is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150, and M2GL150 devices.

remove key -data name <name>
-key names <ALL UPK1l UEK1 UPK2 UEK2 DPK> UEK3

* name - Name of the Programming Data.
* key names - Names of the keys whose values to be reverted (can specify multiple values).

This command reverts the value of the specified encryption and/or pass key to the value imported
from JDC. This command supports action opposite to set_key.

Notes:
« This command is applicable to non-HSM flow only.

+ UEK3is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150, and M2GL150 devices.

set_security_overwrite -data name <name> -file <spm file path>

* name - Name of the Programming Data entry.
* spm_file path - File path of the new SPM file.

This command overwrites design security settings imported from Libero through the new SPM file.
This command is applicable to HSM and non-HSM flows. How the security policies and keys are
overridden is explained below:
+ Security policies: Always overwritten from the new SPM file (HSM and non-HSM flows)
+ Security Keys (UPK1, UEK1, UPK2, UEK2, UEK3, and DPK)

- Non-HSM flow:

+ If set_key is run before or after this command, then all keys specified in set _key
are used. The keys that are not specified are taken from the new SPM file provided as
argument.

+ If set_key is not run, then all security keys are taken from the new SPM file.
- HSM flow:
+ Security keys are always taken from the keyset file.

Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M25150, and M2GL150
devices.

remove_security_overwrite -data name <name>

* name - Name of the Programming Data entry.

This command removes existing security overwrite settings. This command supports action
opposite to set _security overwrite.

@ MICROCHIP

8.4.3.

Note:
This command will fail if set _security overwrite is notrun previously.

set_new_keys_for_rotation -data name <name> \

[-keyset file <keyset name>] \
[-upkl <upkl value>] \

[-uekl <uekl value>] \

[-upk2 <upk2 value>] \

[-uek2 <uekl value>] \

[-dpk <dpk value>] \

[-uek3 <uek3 value>]

+ name - Name of the Programming Data.

* keyset name - Name of the keyset file containing new key values.
* uek* value - New value for the selected encryption key.

* upk* value - New value for the selected pass key.

* dpk_value - New value for the DPK.

This command is used to specify the new key values that user wants to replace with an already
programmed secured device as part of Key Rotation flow. For more information, see HSM Flow and
Non-HSM Flow.

Notes:

* keyset file parameter is only applicable to the HSM flow.

« upk1, uek1, upk2, uek2, dpk, and uek3 parameters are only applicable to non-HSM flow.
+ UEK3is only available for M2S060, M2GL060, M25S090, M2GL090, M2S150, and M2GL150 devices.

eNVM Client Modifications (ask a question)

set_envm_update -data name <data>
-client name <client>
-file < file path>
[-overwrite <YES | NO>]

+ data - Programming data entry name.

* client - Name of the target eNVM client.
* file path - File path of the client update data file.

This command creates a new client update entry in the specified Programming Data. If an update
already exists for that client, the command will fail unless the optional ~overwrite parameter is set
to "yes". Data file size must not exceed the client size defined by the Libero project and imported via
the JDC file. This command allows using all eNVM data file formats that Libero supports. For more
information, see Libero SoC Design Flow User Guide. This command is available for the PolarFire®
SoC device family.

remove_envm_update -data name< data >
-client name < client >
-all <YES| NO>

* data - Programming data entry name.
+ client - Name of the target eNVM client.
* all-Removes all clients. Default is "YES"

This command removes an entry that set _envm update created. All client updates can be
removed using "all" key set to "YES". A removed client update results in the client being reverted
to the original eNVM data received in the JDC.

@ MICROCHIP

20

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-5BD66B5B-AF51-4476-90D3-A9E25D29C92C&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=eNVM%20Client%20Modifications&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf

8.4.4. sNVM Client Modifications (ask a question)

set_snvm_update -data name <data>
-client name <client>
-file < file path>
[-overwrite <YES | NO>]

* data - Programming data entry name.
* client - Name of the target SNVM client.
+ file pathc - File path to the client update data file.

This command creates a new client update entry in the specified Programming Data. If an update
already exists for that client, the command will fail unless the optional ~overwrite parameter is set
to "YES". Data file size must not exceed the client size defined by the Libero project and imported via
the JDC file. This command allows using all SNVM data file formats that Libero supports. For more
information, see Libero SoC Design Flow User Guide.

The command is available for the PolarFire and PolarFire SoC device family.

8.4.5. Bitstream Management (aska question)

init bitstream -data name "design data name" \
-bitstream name "bitstream name" \
-bitstream type "TRUSTED FACILITY | MASTER | UEKl | UEK2 | UEK3 | KEY ROTATION |
DEBUG" \
[-features "[ALL | FABRIC | ENVM | SNVM | SECURITY]+"] \
[-use_protocol "AUTH CODE | UNIQUE KEY"] \
[-unique key types "[UPKl | UEKl | UPK2 | UEK2 | UEK3 | DPK]+"] \
[-envm_clients "[eNVM client selection]+"] \
[-snvm clients "[sNVM client selection]+"] \
[-generate coc "TRUE | FALSE"] \
[-auth keymode "DFK | KFPE | KFP | KUP | KUPE"] \
[-enable key rotation "TRUE | FALSE"] \
[~auto_inc design version] \
[-first keymode "UEKl | UEK2 | UEK3"] \
[-enable passkey export "TRUE | FALSE"]

* data name - Name of the Programming Data entry.
* bitstream name - Name of the bit stream being added (without path or extension).

* bitstream type - Specifies bit stream type. The resulting bit stream will be generated according
to the security policy specified in the Programming Data Security settings. Only one of the
following bit stream types can be selected at a time;

- TRUSTED_FACILITY - For the Non-HSM flow only. Programs selected bit stream components
(Fabric, eNVM, or non-authenticated plain text SNVM clients) using KLK key mode.
- Initiator - Programs security and any other selected components.

+ For the Non-HSM flow: Uses the KLK key mode to program security and other
components. If security is programmed with UEK1/UEK2, then bit stream will also
include plaintext UPK1/UPK2 respectively to enable erase and verify actions.

+ For the HSM flow: Uses DFK, KFP, KFPE, KUP, and KUPE key modes to program security
and other components. In this case, all keys are encrypted by HSM.

- UEK?1 - Programs (updates) selected bit stream component(s) (Fabric/eNVM/sNVM)
using UEK1 key mode. If the target component is update-protected, UPK1 will be
used to unlock target component.

+ For the Non-HSM flow, generated bit stream uses plain text UPK1 value
unlocking security.

+ For the HSM flow, the M-HSM performs security unlock using the encrypted
value of UPK1.

- UEK2 - Similar to UEKT1, but uses UEK2 and UPK2 respectively.

21

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-34F97B7D-55FD-49E3-B3CC-CF4302A3F497&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=sNVM%20Client%20Modifications&devices=
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-821E757C-08E7-4DCD-AC20-7337F8147989&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Bitstream%20Management&devices=

- UEKS3 - Similar to UEKT1, but uses UEK3. Supported for M2S060, M2GL060, M2S090,
M2GL090, M2S150, and M2GL150 devices.

- KEY_ROTATION - Specifies that bit stream will be used for updating user keys, see Key
Rotation section.

- DEBUG - Initializes bit stream that can be used for debugging with tools like SmartDebug
that require HSM support to unlock device debug features using One Time Passkey protocol
protected by user encryption keys. This type of bit stream requires specification of the
protocol (ONE TIME PASSCODE)in the current version and auth keymode that can be UEK1
or UEK2 depending on security settings.

+ features - Any combination of the features or ALL (default option) SECURITY is selected for
programming.

Important: Security is always programmed in the Initiator bit stream.

- FABRIC - Selected for programming.

- eNVM - Selected for programming. Supported for SmartFusion 2, IGLOO 2, and PolarFire SoC
devices.

- SNVM - Selected for programming. Supported for PolarFire and PolarFire SoC devices.
- ALL - All features available in Design Data to be selected (default).

Important: For PolarFire devices, Fabric and sSNVM must be programmed all at
once. Separate programming of sSNVM disables Fabric.

* use protocol - Allows selecting one of the following HSM security protocols:

- AUTH_CODE - Securely sends Encryption Key (KIP) to the device using Authorization code.
Use this option when all the user keys are project keys. This protocol supports INITIATOR bit
stream flow and UEK1/UEK2/UEK3 update bit streams flow.

- UNIQUE_KEY - Allows programming unique per-device keys in the Initiator flow. For the
UEK1/UEK2/UEK3 update flow, this option can be used to generate per-device bit stream files
(if DSN is known at the time of job or bit stream file generation) or to use per-device keys
during programming jobs using the M-HSM.

* hsm protocol parameters -
-unique key types <UEK1l UEK2 UPK1l UPK2 DPK UEK3>

Parameter required for UNIQUE_KEY protocol. It specifies which of the user keys are per-device
keys. Each per-device key is derived from a base key and Device Serial Number (DSN) during
programming, which makes it device-specific.

Important: UEK3 is supported for M2S060, M2GL060, M2S090, M2GL090,
M2S150, and M2GL150 devices only.

* generate coc - Parameter to setup the generation and export of Certificate of Conformance.
This command allows the user to setup parameters for bit stream generation. Actual generation
occurs upon job or bit stream file export. Bitstream generation is based on design information
in the Programming Data entry, including all modifications such as eNVM update, security
overwrites, and so on.

@ MICROCHIP

22

* auth keymode - Specifies what key mode to use for Authorization component in INITIATOR bit
stream HSM flow. This parameter is required for M2S060, M2GL060, M25090, M2GL090, M25150,
M2GL150, and all PolarFire and PolarFire SoC devices and optional for the rest of SmartFusion 2
and IGLOO 2 devices. The following table shows the valid and default value of this parameter.

* enable passkey export - By default, the programming or the job file does not contain plain
text UPK values. Use —enable passkey export toinclude plain text UPK values in the STAPL
or the JOB file. Set to TRUE in the non-HSM flow to allow erase/verify operations, if security is
programmed.

Important: By default, UPKs are not staged to prevent security risks.

PolarFire® and PolarFire SoC devices KFP, KFPE, KUP, KUPE
M2S060, M2GL060, M2S090, M2GL090, M2S150, M2GL150

Other SmartFusion® 2 and IGLOQO® 2 devices DFK

* enable key rotation - Used to generate an initiator file, which allows updating user keys
using Key Rotation flow. The UNIQUE KEY protocol is not supported.

* auto_inc design version - Flag to automatically increase design version in each of the
exported key rotation bit stream file. This parameter is set by default if Auto-Update flow is
enabled in JDC.

+ first keymode - Denotes the key mode used to encrypt the first key rotation bit stream file
(x_rotate 1 uks). If useris aware that particular User Key Set is not compromised, then they
can use it to securely start the key rotation flow.

The following is an example of bit stream settings for the SmartDebug tool.

init bitstream -data name {MyProgData} -bitstream name {MyDebugBitstream}
-bitstream type {DEBUG} \
-features {ALL} -use protocol {ONE TIME PASSCODE} -auth keymode {UEKI1}

export_bitstream file -data name <name>
-bitstream name <bitstream name>
-formats <format selection>
—export path <path > [-dsn <dsn value>]

* name - Name of the programming data.
* bitstream name - Name of the bit stream entry to be exported.

+ format selection - Any combination of the format types. File will be created for each selected
type:
- STAPL file (non-HSM and HSM update flow)

- SPI file (non-HSM and HSM update flow)
- DAT file (non-HSM and HSM update flow)

+ path - Complete file path without any extension. Extensions are determined based on format
parameters above.

* dsn - Device Serial Number (DSN) of the device for which to generate per-device UEK1/2/3-bit
stream files.

This command generates and exports specified format bit stream file(s). The bit stream file is
generated based on the information provided in the Programming Data entry.

@ MICROCHIP

23

8.5.

Programming Job (aska auestion)

new_prog_job -job name <name>
-job type <job type | SDebug>
[-setup < hw_setup_ type>]
* name - Name of the programming job entry.
* job type - Type of job. One of the following:
- IHP: Job for IHP flow.
- FPExpress: Job for FPExpress flow.
- SDebug: Create Debug Job (DDC file) for SmartDebug tool.
* hw setup_ type - Type of the hardware setup.
- JTAG_CHAIN: JTAG chain (default parameter)
This command creates a new programming job. The programming job can be for IHP flow or for
FPExpress. The job is created for a specific hardware setup type. The default setup type is JTAG

chain. Job name must be unique among other job names. The job can have one or more devices and
optional HSM Tasks for the HSM flow.

add_microsemi_prog_device -job_name <job>
—-device name <device>
-device_hw_location <location>
[-data name <data>]
[-bitstream name <bitstream>]
[-dsn <dsn_value>]
[-bitstream file <bitstream file>]

* job - Name of the programming job to add device.

* device - User name of the device. Must be unique within the Job.

* location - Hardware location of the device in the setup: Chain index for JTAG chain.
+ data - Name of the Programming Data containing bit stream file.

* bit stream- Bitstream name in the Programming Data.

* dsn - Parameter to set the DSN of the device. This is used for generating per-device UEK1/2/3 bit
stream files.

* bitstream file - Path of STAPL file to program this device. This is useful for adding device in
chain.

This command manually adds a Microchip device targeted for programming by a bit stream
generated from the specific design (Programming Data) or STAPL file. Device name must be unique
among other devices inside specified jobs.

Note: You can add any valid Microchip device using a stand-alone STAPL file. However, only
SmartFusion 2 and IGLOO 2 are supported when using the Programming Data option.

add_microsemi_bypass_device -job name <job>
-device name <device>
-device hw location <location>
[-device type <die name>]
[-bitstream file <bitstream file>]

* job - Name of the programming job to add device.

* device - User name of the device. Must be unique within the Job.

* location - Hardware location of the device in the setup: Chain index for JTAG chain.
* die name - Name of Microchip device (for example, M25S010, M2GL090TS, and so on).
* bitstream file - STAPL file path for this device.

@ MICROCHIP

24

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-FFFD2070-D972-4931-AB1C-A9D6ACC6C2E8&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Programming%20Job&devices=

This command adds a Microchip bypass device by either specifying the die name or by specifying a
STAPL file.
add_non_microsemi_bypass_device -job name <job>
-device name <device>
-device hw location <location> [-ir <IR len>]

[- tck <tck>]
[-file <bsdl file>]

* job - Name of the programming job to add device.

+ device - User name of the device. Must be unique within the Job.

* location - Hardware location of the device in the setup: Chain index for JTAG chain.
+ ir-IRlength.

* tck-Max TCK frequency (in MHz).

* bsdl file - BSDL file path for targeted non-Microchip device.

This command adds a non-Microchip bypass device by either specifying IR length and TCK frequency
or by specifying BSDL file.

export_prog_job -job name <job>
-location <path>
-name <file>

* job - Name of the programming job being exported.
* path - Path to the directory in which the job file will be exported.
* name - File name of the job file to be exported.

This command exports a non-HSM job for FlashPro Express or IHP.

Note: An HSM job is exported using the export hsmtask command.
import_job_status -job status file <path>

* path - Path to the job status container generated by FlashPro Express.

HSM flow only: Imports and validates job status received from FlashPro Express or IHP. Status can
be generated in the process of job execution to provide current job status, or as a result of job end,
in which case, it includes cryptographically protected proof of job removal from the HSM.

8.5.1. HSM Task (Ask a Question)

add_hsmtask to_job -job name <job>
-hsmtask name <task>
[-m request type {INTERNAL|EXTERNAL}]
* job - Name of the programming (or debug) job for which task is created.
* task - Name of the HSM Task. Must be unique within the job.
* m_request_ type - Specifies how the M-HSM request is executed.

- INTERNAL - This mode can only be specified if the same physical User HSM is used to
generate and execute the programming job. In this case, the Job Manager will internally
execute the request.

- EXTERNAL - Default mode requires user to export the request, process it using FlashPro
Express, and then import it back into the Job Manager project.

25

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-00D73EDA-686D-4C21-9D31-4470EE454186&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=HSM%20Task&devices=

This command creates a new HSM Task for the specified programming job. The HSM task can
contain one or more job tickets. This HSM task is then used to send a job request to the M-HSM and
the job response received is imported into the HSM Task, which then enables HSM task export.

new_hsmtask_ticket -job name <job>
-hsmtask name <task>
-ticket name <ticket>
-device <device>
-actions <programming action | DEBUG>
-max_device <max>

* job- Name of the programming job which adds a new ticket.
* task - Name of the task within the Job.
* ticket - Name of the new ticket. Must be unique within the task.
+ device - Name of the target device in the Job for the new ticket.
* action - Programming action for the ticket.
- DEBUG: SmartDebug action for the ticket.
* max - Overbuild protection: max devices to use this ticket. Can be 'unlimited".
This command creates a new job ticket for the HSM Task. The HSM task can have one or more
job tickets for each device, but each job ticket is created per programming action. The overbuild

protection parameter max device is applicable to the protocols that are capable of controlling the
number of authorized devices, such as the Authorization Code and Unique Key protocols.

hsmtask_m_request -job name <job>
-hsmtask name <task>
-request file <path>

* job - Name of the programming job that contains target HSM Task.
+ task - Name of the HSM task for which CM request is being generated.
+ path - Full file name of the request container.

This command creates a job request that is required to perform a handshake protocol with the
M-HSM (FlashPro Express or IHP). Once FlashPro Express has processed the request, it generates
and exports a Job Reply that must be imported into the HSM Task on the Job Manager side. This
handshake protocol guarantees one time use of the HSM Task on the FlashPro Express or IHP side
(M-HSM), thus preventing job replication. This command is only applicable if the HSM task was
created with the request set to EXTERNAL value (default). See add_hsm_task for details.

hsmtask_ m_reply -job name <job>
-hsmtask name <task>
-reply file <path>

* job - Name of the programming job that owns target HSM Task.
* task - Name of the task in the job.
* path - Full file name to the container with Job Response.

Import job reply by FlashPro Express or IHP (M-HSM). This command is only applicable if the HSM
task was created with the request set to EXTERNAL value (default). See add hsm_task for details.
For more information, see the process job request FlashPro Express command documented in
the Tcl Commands Reference Guide.

export_ hsmtask -job name <job>
-hsmtask name <task>
-location <path>
-name <file name>

@ MICROCHIP

26

http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_soc_tcl_cmd_ref_ug.pdf

* job - Name of the programming job that contains task being exported.
* task - Name of the task in the job.

* path - Location of the export container.

* file name - File name for the export container.

This command exports the HSM job for further execution by FlashPro Express or IHP. This can only
be executed after importing job reply.

8.5.2. SPI Directory (Ask a Question)

export_spi_directory -golden ver <value or SPI file>
-golden addr <hex value>
-update ver <value or SPI file>
-update addr <hex value>
-file <file name>

* golden ver <value or SPI file> - Specifies Golden SPIImage design version. There are
two ways to specify the value:

- Decimal value less than 65536 (exclusive)
- SPI file from which the design version is read.

* -golden addr <hex value> - Specifies Golden SPI Image address where hex is 32-bit
hexadecimal value with prefix 0x/0X.

* -update ver <value or SPI file> - Specifies Update SPI Image design version. There are
two ways to specify the value:

- Decimal value less than 65536 (exclusive)
- SPI file from which the design version is read.

* -update addr <hex value> - Specifies Update SPI Image address where hex is a 32-bit
hexadecimal value with prefix 0x/0X.

+ -file <file> - Mandatory argument; specifies the file export location.
Supported Families

* SmartFusion 2
+ |IGLOO 2

Both golden* options go together. The same is true for both update* options; the
file argument is required:

export spi directory \

-golden ver

{D:\flashpro files\m2s025 jb spi dir\designer\al MSS\exportlal MSS.spi} \
-golden addr {Oxa} \

-file {D:\flashpro files\jobmgr projectl2\dev.spidir}

export spi directory \

-update ver {456} \

-update addr {Oxdef} \

—-file {D:\flashpro files\jobmgr projectl2\dev.spidir}

export spi directory \

—golden ver {123} \

-golden addr {Oxabc} \

-update ver {456} \

-update addr {Oxdef} \

-file {D:\flashpro files\jobmgr projectl2\dev.spidir}

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-87BE5710-5EF8-41A5-92C2-1230BC62A10E&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=SPI%20Directory&devices=

9. Referenced Documents (s auestion)
This user guide references the following documents:

Secure Production Programming Solution (SPPS) User Guide
Libero SoC Design Flow User Guide

FlashPro Express User Guide

User HSM Installation and Setup User Guide

Manufacturer HSM Installation and Setup User Guide

@ MICROCHIP

28

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-E63B4D4E-AEBA-4E30-911D-769A64A028A5&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Referenced%20Documents&devices=
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/spps_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/libero_ecf_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/flashpro_express_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/user_hsm_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/2025_1/Tool/man_hsm_ug.pdf

10. Revision History s aueston)

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

N 05/2025 This document is released with Libero SoC Design Suite v2025.1
without changes from v2024.2.

M 11/2024 Added a note in the Export Programming Bitstream File section.

L 08/2024 This document is released with Libero SoC Design Suite v2024.2
without changes from v2024.1.

K 02/2024 This document is released with Libero SoC Design Suite v2024.1
without changes from v2023.2.

J 08/2023 This document is released with Libero SoC Design Suite v2023.2
without changes from v2023.1.

H 04/2023 This document is released with Libero SoC Design Suite v2023.1

without changes from v2022.3.

G 12/2022 The following changes are made in this revision:
+ Updated the HSM-based Manufacturing Flow section.
* Updated the HSM Programming or Debug Job section.

+ Updated the Creating a FlashPro Express or SmartDebug Job
section.

* Updated the Update Bitstream Job Flow section.
+ Updated the Bitstream Management section.

+ Updated the Programming Job section.

+ Updated the HSM Task section.

F 08/2022 The following changes are made in this revision:
+ Updated the Design Import section.
+ Updated the Security Modifications section.
+ Updated the eNVM Client Modifications section.
+ Updated the sNVM Client Modifications section.

+ Updated the Bitstream Management section.

E 04/2022 This document is released with Libero SoC Design Suite v2022.1
without changes from v2021.3.
D 12/2021 This document is released with Libero SoC Design Suite v2021.3

without changes from v2021.2.
C 08/2021 Key Rotation: Added a new section related to key rotation.

Security Modifications: Added a new Tcl command
set new keys for rotation.

Bitstream Management: Added KEY_ROTATION bit stream type for
init bitstream Tcl command.

B 04/2021 Editorial updates only. No technical content updates.

11/2020 Document converted to Microchip template. Initial revision.

29

@ MICROCHIP

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-0CD92659-3C6E-4185-842F-E45F0400BC01&pub_lang=en-US&pub_ver=12&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-0C488408-4A44-455A-A5D2-1CBA19163CBB&cover_title=Job%20Manager%20User%20Guide&tech_support_link=NA&revision_letter=N&source=PDF&title=Revision%20History&devices=

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including
Customer Service, Customer Technical Support Center, a website, and worldwide sales offices.
Customers are suggested to visit Microchip online resources prior to contacting support as it is
very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the
FPGA Device Part number, select appropriate case category, and upload design files while creating a
technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

* From North America, call 800.262.1060
* From the rest of the world, call 650.318.4460
+ Fax, from anywhere in the world, 650.318.8044

Microchip Information

Trademarks

The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks"). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-1094-3

Legal Notice

This publication and the information herein may be used only with Microchip products, including

to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

@ MICROCHIP

30

http://www.microchip.com/support
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

+ Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

+ Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

@ MICROCHIP

31

	Introduction
	Table of Contents
	1. Manufacturing Flows
	1.1. HSM-based Manufacturing Flow
	1.1.1. HSM Server Requirements

	1.2. Non-HSM Manufacturing Flow

	2. HSM Parameter Configuration
	3. Keyset File
	4. Programming Data
	4.1. Create Programming Data from JDC File
	4.2. eNVM and sNVM Update
	4.3. Key Overwrite (Non-HSM Flow)
	4.4. Security Overwrite
	4.5. Bitstream Initialization
	4.5.1. HSM Flow
	4.5.2. Non-HSM Flow
	4.5.3. Export Programming Bitstream File

	5. Programming Job
	5.1. HSM Programming or Debug Job
	5.2. Creating a FlashPro Express or SmartDebug Job
	5.2.1. Configuring a JTAG Chain
	5.2.2. Export of Non-HSM Programming Job
	5.2.3. HSM Tasks

	6. Export SPI Directory
	7. Key Rotation
	7.1. Master Bitstream Job Flow
	7.2. Update Bitstream Job Flow
	7.3. HSM Flow
	7.4. Non-HSM Flow
	7.5. Key Rotation Bitstream Files
	7.6. Export SPI Directories

	8. Tcl Interface
	8.1. Application
	8.2. Keyset Management
	8.3. Project Management
	8.4. Programming Data
	8.4.1. Design Import
	8.4.2. Security Modifications
	8.4.3. eNVM Client Modifications
	8.4.4. sNVM Client Modifications
	8.4.5. Bitstream Management

	8.5. Programming Job
	8.5.1. HSM Task
	8.5.2. SPI Directory

	9. Referenced Documents
	10. Revision History
	Microchip FPGA Support
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

