UGO0758
User Guide
PolarFire FPGA Design Flow

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

Power Matters.”

PolarFire Design Flow User Guide

Power Matters.”
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
WwWw.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and
the Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks
and service marks are the
property of their respective
owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does Microsemi
assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must
conduct and complete all performance and other testing of the products, alone and together with,
or installed in, any end-products. Buyer shall not rely on any data and performance specifications
or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party
any patent rights, licenses, or any other IP rights, whether with regard to such information itself or
anything described by such information. Information provided in this document is proprietary to
Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization
devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions;
security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet
ICs and midspans; as well as custom design capabilities and services. Microsemi is
headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

5-02-00758-5/03.18

& Microsemi

Power Matters.”

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Table of Contents

Table Of CONTENTS ... 2
Libero SOC INTrOodUCTIONeuuiiiiee e e e e e e e 4
Welcome to Microsemi's Libero® SoC PolarFire™ v2.1 RElEASEccovevveierieiieseieeiesieanas 4
Libero SOC PolarFire DeSIGN FIOW.cviiiiiiiiiiiieee et e e e e e snanae e e e s 5
Constraint FIOW and DESIgN SOUICES........cuuuiaiiiiiiiiiiieae ettt e e e e e e e e e e e s anabbeeeeaaa e e e annneees 8
File Types in LIDEro SOC........ooo et 9
Software TOOIS - LIDEIO SOC.........oviiiiiiiiieiiee ettt 10
Libero Design FIOW ..o 12
Starting the LIDEIO GUIccooiiiiiie ettt e e 12
[TS o T =T 0T 13
Using the New Project Wizard to Start @ Projectcc.uveiieiiiiiiiiiieieeeee e 13
Create and Verify DeSigN ..o 19
Create SMAIDESIGN.icci it e e e e e s r e e e e e s st e e e e e s e s s et ereeeeeeaaanraaereeeeeeaannraees 19
Create Core frOM HDLcoiiiiie ettt et e st e e st e s b re e e e annee 20
DeSigNING WIth HDL........coiiiiiiiiiiiiiie et e e e e e e e 22
Designing With BIOCK FIOWccoiiiiiiiii ettt e e e e e e e e e enanane e e 23
SMartDesigN TESIDENCI ... e e e e e e e aeeeees 23
[|3 I TS i o1 o o SRS 24
Verify Pre-Synthesized Design - RTL Simulationcccceeeviiiiiiieeie e 25
Libero SoC Constraint Management ... 29
Invocation of Constraint Manager From the Design Flow WiNndow..............cccvciivenniieiininnen. 29
(] 1= £ TS ORI T o | N o 30
Introduction t0 CONSIrAINT MBNAGETcoi ittt e e e e e e e ranbreeeeeaeas 30
IMPOrt & CONSIIAINT FIlE........coiiiiiiii e 34
(70 oIS = 1T gL A I8/ 1= 38
Constraint Manager — [/O Atributes Tab ..o 39
Constraint Manager — TiMING Taboouiiiiiii e 41
DerVEd CONSIIAINTS.eiiriieieiee ettt et e e nr e s e esare e e nn e e sneeeneeen 43
Constraint Manager — FIoor Planner Tab ... 43
Constraint Manager — Netlist Attributes Tab ... 44
IMPIEMENT DESIGN 1ot aeaaaas 47
)Y 11 (1S 2 S PP RRPT a7
COMPIIE NS ...ttt e s s b e e s et e e s anbbe e e e aneee 51
ST o 1U] o] ST U ST Vo [52
Constraint FIOW in IMpIemMentation............cooii i 54
[F= Lo ST T Lo Lo (SRR 59

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

Multiple Pass Layout CONFIQUIALIONcooiiiuiiiiiiiae et 61
Verify Post Layout IMpPIemMeNntationcooiiiiiiiiiiiee e 63
Program and Debug DeSign.......coouuuiiiiiiiiiieeeeeee e 69
Generate FPGA AITAY DAuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiei bbb e ebebeeebebabebebabsbebebsbnbsensannnes 69
Design and Memory INItAlIZAIONoouiiiiiiiiee e e e eaeee e 69
(70 a1 {To U= FoT o 11T o= R 86
Configure Programming OPLIONSuueiiiiiiiiiiiiiiieie ettt a et e e e e e e s s ranbbee e e e e e e s s anneeees 91
L07e] a1 To T8 =TS T=T o U | /SRR 91
L (oo =T T 7=] T [S 99
Program SPI FIash IMage......cooo o 107
[T o 18 o T 0 Lo o o PSR 111
Handoff Design for ProducCtion..........ccoouiiiiiiiiiie e 113
oo T B =71 K511 (== T o PP PUTT 113
EXport FIashPro EXPress JODcoiiiiiiiii e 115
Lo d oo T] o I = T o T g = Vo = PR 118
ool T o =T o To] o ST TP PP PRTTP 118
EXPOIt BSDL Fle....cco ittt ettt st e e e e e 119
Export SmartDebug Data (Libero SOC)ccoovviiiiiiiiiii e, 120
REFEIENCES ..oovi e e e 122

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Libero SoC Introduction

.l
Libefo)

System-on-Chip

Welcome to Microsemi's Libero- SoC PolarFire™ v2.1 Release

Microsemi's Libero® SoC PolarFire™ software is specifically for designing with PolarFire FPGAs, the fifth
generation family of non-volatile FPGA devices from Microsemi, built on state-of-the-art 28nm non-volatile
process technology. Cost-optimized PolarFire FPGAs deliver the lowest power at mid-range densities.

For documentation about PolarFire FPGAs, see the PolarFire product information page on the Microsemi
website.

Microsemi's Libero® SoC is a comprehensive and powerful FPGA design and development software suite,
providing start-to-finish design flow guidance and support for novice and experienced users alike. Libero
SoC combines Microsemi's tools with EDA tools such as Synplify Pro® and ModelSime.

More Information
For more information about the Libero® SoC PolarFire v2.1 release, see the Microsemi Website.

http://www.microsemi.com/polarfire
http://www.microsemi.com/libero-soc-polarfire

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

Libero SoC PolarFire Design Flow

The Libero SoC PolarFire Flow is shown in the figure below.

Create Testbench .
Create Design

Constraint
v
" Manager
- Pre-Synthesis
Simulation Pre-Synthesis constraints
I‘ A Derived Constraints SDC
Implement
Testbench _ usarlec
= _P_ _ ; _ _h_ =] S thwiie */ Metlist Attributes FDC/NDC
| ost-Synthesis | :
ﬂ.>: sirmulation :<. e Place & Route Constraints
(Optional) | Derived Constraints SDC
| Bl Place and R
e s | e anc hoe +\-———~__ user2.sdc
i Post-Layout | I/0 PDC
e Simulation K+ e s o s Floor Planning PDC
l Optional | ify Ti
Ll | verty Timing 4\ Timing Verification Constraints
Derived Constraints SDC
user3.sdc
v

Program and Debug Design

Generate Bitstream
Program Device
SmartDebug

Y

Handoff for Firmware Dev.

Handoff for Production
Security Options

Handoff for Debugging

Figure 1 - Libero SoC Design Flow
(NOTE: Sometimes called "Enhanced Constraint Flow" in the documentation).

Create Design

Create your design with any or all of the following design capture tools:
e Create SmartDesign
e Create HDL
e Create SmartDesign Testbench (optional, for simulation only)
e Create HDL Testbench (optional, for simulation only)

Once the design is created, you can invoke simulation for pre-synthesis verification.

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

It is also possible to click the o button, to execute the Libero SoC software from Synthesis (for HDL flow)
or Compile Netlist (for EDIF flow) through Place and Route with default settings. However this bypasses
constraint management.

Constraints

Manage Constraints

See Also

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of
the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing
FDC constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing
constraints guide the tool to achieve the timing requirements whereas Physical Design Constraints (PDC)
guide the tool for optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing
constraints set the timing requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is
a single centralized graphical interface for you to create, import, link, check, delete, edit design constraints
and associate the constraint files to design tools in the Libero SoC environment. The Constraint Manager
allows you to manage constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the
SmartTime Timing Analysis throughout the design process.

Invocation of Constraint Manager From the Design Flow Window

After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint
Manager.

| Reports & X | my_usersdc & X | Constraint Manager & X | mddr_top_sb_CCC_0_FCCC.sdc & X ‘

L]

1/0 Attributes \/ Timing \/” Floor Planner \/ Netlist Attributes D b Constraints Tab

~

I MNew] [Impart] I Link.] [Editwith Constraint Editor v] [Check '] [Deri\«'e Constraims] [ConstraintCoverage V] [Help] 4 '
N—’

- Synthesis Place and Route Timing Verification

ol 5

constraint top_derived_constraints.sdc

constraint\my.sdc] 0o 0

Qnstramt\my_user.sdc [] O

Constraints
File Order
File and Tool Association

Figure 2 - Constraint Manager

Constraint Manager

New Project Wizard to import/link design constraints when creating new projects

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

Implement

Netlist Viewer User Guide

Synthesize

Double-click Synthesize to run synthesis on your design with the default settings. The constraints
associated with Synthesis in the Constraint Manager are passed to Synplify.

Place and Route

Place and Route takes the design constraints from the Constraint Manager and runs with default settings.

This is the last step in the push-button o design flow execution.

Verify Post Layout Implementation

e Verify Timing - Right click and select Configure Options to specify a timing report with your desired
conditions.

e Open SmartTime
o Verify Power

Program and Debug Design

Generate FPGA Array Data

Design and Memory Initialization

Configure Hardware
e Programming Connectivity and Interface - Organizes your programmer(s) and devices.

e Configure Programmer - Opens your programmer settings; use if you wish to program using settings
other than default.

e Device I/O States During Programming - Sets your device I/O states during programming; use if
your design requires that you change the default I/O states.

Configure Programming Options

Configure Security Wizard

Program Design

e Generate Bitstream
e Run PROGRAM Action

Debug Design
e SmartDebug (User Guide)

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/stdalone_nlv_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_smartdebug_ug.pdf

& Microsemi

Power Matters.”

PolarFire Design Flow User Guide

Handoff Design for Production

Export Bitstream

Export SPI Flash Image

Export FlashPro Express Job

Export Pin Report

Export BSDL

Handoff Design for Debugqging (Export SmartDebug Data)

Constraint Flow and Design Sources

The Constraint Flow supports HDL and EDIF design sources. The Libero SoC Design Flow window and the
Constraint Manager are context-sensitive to the type of design sources: HDL or EDIF.

Constraint Flow for HDL designs

When the design source is HDL, the Design Flow window displays Synthesis as a design step. The
Constraint Manager also makes available Synthesis as a target to receive timing constraints and netlist
attribute constraints. The options to promote or demote global resources of the chip are set in the Synthesis
options.

Constraint Flow for EDIF designs
When the design source is EDIF/EDN, the Design Flow window displays Compile Netlist as a design step.

Timing constraints can be passed to Place and Route and Timing Verification only.

The options to promote or demote global resources of the chip are set in the Compile Netlist options.

The HDL flow versus the EDIF Flow is compared and contrasted below.

HDL Flow EDIF Flow
Design Flow Design Flow & x
prepl = p] @'

Top Module(root): prepl

ITDO|
+- » Create Design
=l » Constraints
Manage Constraints
=l- » Implement Design

B Netlist Viewer
"-:? Synthesize
?lc Place and Route
» Verify Post Layout Implementation
Program and Debug Design
Configure Permanent Locks for Production
Handoff Design for Production
Handoff Design for Debugging

o] - []
v vy vy v+

Design Flow Window

Tool

¥ Create Design

4 b Constraints
| | # Manage Cor |
4 » Implement Design
B Netlist Viewer
S Compile Netlist

2 Place and Route
4 b Verify Post Layout Implementation
&, Verify Timing
Q; Open SmartTime
o} Verify Power
¥ Program and Debug Design
» Configure Permanent Locks for Production
4 p Handoff Design for Production
«L] Export Pin Report
+'| Export BSDL

Design Flow Designl_-leraf@y | St_irr!u!usherardw l Cata!pg l Fil__es |

Design Flow Window

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

HDL Flow EDIF Flow
LGy e [0 Attributes \/ Timing \/ Fioor Planner |/ Netiist Attributes \
/10 Attrbates [Tming \/ Fioor Planner \/ Netist Atiributes \ . =
. . New Import Link Edit with Constraint Editor [+ | Check [*| D
Mew | mmpet | ek Edt with Constraint Editor [¥] Check [¥ Derive Constraints | Constraint Coverage [+
""""" : Place and Rout: Timing Verification

e — ot e J RS S o 1.11'1'.'"9 eication constraint/user sdc v 4
constraint\usersdc [Target] =] cil =] constraint/my2 sdc «

Constraint Manager Constraint Manager

constantvaneger & x| [0 Attributes \[Timing \/ Floor Planner |/ Netlist Attributes
{170 Atributes \/ Timing "\/ Fioar Flanner 1/ Netist Attibutes |

New [v| Import Link Check |v| Help

New | tmpet | ek Edit with Constraint Editor [¥ Check |+ Desive Constraints | Constraint Coverage | ;
|5),“Mm Check Synthesis Constraints Check Compile Netlist Constraint (NDC) |
constraint\usersde | Target | [E] Check Place And Route Constraints

constraint/my.ndc '

Check Timing Venffication Constraints

H _ *
Constraint Manager - Check *.fdc and *.ndc Constraint Manager - Check *.ndc only

- Synthesize Options o [] Compile Metlist Options P |3
Global Nets
Minimum number of clock pins: 2 Global Promotion
Minimum number of asynchronous pins 800
Minimum fanout of non-clock nets to be kept on globals: 5000 Mumber of global resources: 24
Number of global resources: 24
Maxkmun number of global nets that could be demobed to row-globais: | 16 Maximum number of global nets that could be demoted to row-globals: 16|

Minimum fanout of global nets that could be demated to row-globals: | 1000
Minimum fanout of global nets that could be demoted to row-globals: 1000

Optimizations
b i
EIWON Eamst0 Minimum fanout of nen-dodk nets to be kept on globals: 5000
RAM optimized for ® High speed Low power
Map seq-shift register components to: Registers * RAMB4x12
Addiionstoptins for SynpilyPro synthesis
Script file b

Additional options:

Help Qonce | Pox

Global Promotion/Demotion Options set in
Synthesis Options Dialog Box

Global Promotion/Demotion Options set in
Compile Netlist Options Dialog Box

Figure 3 - HDL vs. EDIF Flow

File Types in Libero SoC

When you create a new project in Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your local project files. When you import files from outside your current
project, the files are copied into your local project folder.

The Project Manager enables you to manage your files as you import them. If you want to store and
maintain your design source files and design constraint files in a central location outside the Project location,
Libero gives you the option to link them to your Libero project folders when you first create your project.
These linked files are not copied but rather linked to your project folder.

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.

The top level directory (<project_name>) contains your *.prjx file; only one *.prjx file is enabled for each
Libero SoC project. If you associate Libero SoC as the default program with the *.prjx file (Project >
Preferences > Startup > Check the default file association (.prjx) at startup), you can double-click the *.prjx
file to open the project with Libero SoC.

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

component directory - Stores your SmartDesign components (SDB and CXF files) and the *_manifest.txt
file for each design components in your Libero SoC project. Refer to the *_manifest.txt file if you want to run
synthesis, simulation, and firmware development with your own point tools outside the Libero SoC
environment. For each design component, Libero SoC generates a <component_name>_manifest.txt file
which stores the file name and location of:

e HDL source files to be used for synthesis and simulations
e Stimulus files and configuration files for simulation

e Firmware files for software IDE tools

e Configuration files for programming

e Configuration files for power analysis.

constraint directory - All your constraint files (SDC timing constraint files, floorplanning PDC files, 1/0 PDC
files, Netlist Attributes NDC files)

designer directory - *_ba.sdf, *_ba.v(hd), STP, PRB (for Silicon Explorer), TCL (used to run designer),
impl.prj_des (local project file relative to revision), designer.log (lodfile)

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog

simulation directory - meminit.dat, modelsim.ini filesfiles and *.vec file, run.do file for simulation.
smartgen directory - GEN files and LOG files from generated cores

stimulus directory - BTIM, Verilog, and VHDL stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify lodfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)

viewdraw directory - viewdraw.ini files

Internal Files

Libero SoC generates the following internal files. They may or may not be encrypted. They are for Libero
SoC housekeeping and are not for users.

File File Extension Remarks
Routing Segmentation File *.seg
Combiner Info *.cob
Hierarchical Netlist *.adl
Flattened Netlist * afl
map file *.map Fabric Programming File

Software Tools - Libero SoC

The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and
passes design data between tools.

For more information on Libero SoC tools, visit:
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

Function Tool Company

Project Manager, HDL Editor, Core Generation Libero SoC Microsemi SoC

10

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Function Tool Company
Synthesis Synplify® Pro ME | Synopsys
Simulation ModelSim® ME Mentor Graphics

Pro

Timing/Constraints, Power Analysis, Netlist Viewer, Libero SoC Microsemi SoC
Floorplanning, Package Editing, Place-and-Route,
Debugging
Programming Software FlashPro Microsemi SoC

Programming Software

FlashPro Express

Microsemi SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog
with color, highlighting keywords for both HDL languages.

Synplify Pro ME from Synopsys is integrated as part of the design package, enabling designers to target

HDL code to specific devices.
Microsemi SoC software package includes:

e Chip Planner displays I/O and logic macros in your design for floorplanning

¢ Netlist Viewer design schematic viewer
e SmartPower power analysis tool

e SmartTime static timing analysis and constraints editor

ModelSim ME Pro from Mentor Graphics enables source level verification so designers can verify HDL code
line by line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-
synthesis), and back-annotated (post-layout), dynamic simulation. (ModelSim ME Pro is supported in Libero

Gold and Platinum only.)

11

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Libero Design Flow

Starting the Libero GUI

When starting Libero SoC GUI, the user will be presented with the option of either creating a new project, or

opening an old one.
a

Project File Edit View Design Tools Help
- n
e 229 0|

StartPage

7 [°]

New.
Qpen...

Recent Projects

{softysnatestl4/sou.../sort4 pf21

gatestld/sou../sortd pf22
{softysqatestld/sou...fjade sf2 ect
Isoftisqatestl4/sou...ffade ig2 ccf
soft/sqatest14/sou.../smartdebug

Welcome to Microsemi's Libero® SoC PolarFire™ v2.1 Release

Microsemi's Libero® SoC PolarFire™ software is specifically for designing with PolarFire FPGASs, the fifth generation family of non-
volatile FPGA devices from Microsemi, built on state-of-the-art 28nm non-volatile process technology. Cost-optimized PolarFire FPGAs
deliver the lowest power at mid-range densities.

Libero -ox

Welcome to Libero SoC C

Libero SoC Quickstart
Libero SoC Interface Description
Libero Tutorials

Product Tutorials

Toaining Webcasts

Leg

[] Messages @ Errors A Warnings

Message

For documentation about PolarFire FPGAs, see the PolarFire product information page on the Microsemi website.

Microsemi's Libero® SoC is a comprehensive and powerful FPGA design and development software suite, providing start-to-finish design
flow guidance and support for novice and experienced users alike. Libero SoC combines Microsemi's tools with EDA tools such as
Synplity Pro® and ModelSim™®.

More Information

For more information about the Libero® SoC PolarFire v2.1 release, see the Microsemi Website.

@ Info

Fam: |Part:

Figure 4 - Libero SoC Start-up GUI

e Clicking on Open ... opens a pre-existing Libero SoC project.

e Clicking on New... starts the New Project Wizard. Upon completion of the wizard, a new Libero SoC

project is created and opened.

Having opened a project, the Libero SoC GUI presents a Design Flow window on the left hand side, a log
and message window at the bottom, and project information windows on the right. Below we see the GUI of

a newly created project with only the top level Design Flow Window steps visible.

(® Libero - U\praj_v11_8\polarfire_count16\palarfire_count16.prx

[=iE

._P_r-oject File Edit View Design Tools Help
DESd ™08 &
iﬁgagnFluw

a 0@

Please select a root

Tool

Create Design

Constraints

Implement Design

Program and Debug Design

Configure Permanent Locks for Production

»
b
»
»
b
» Handoff Design for Production

x|

Reports & X | StartPage @ X

@i & oErrors i 0Warnings i 0 Info

| Project Summary
polarfire_countlélog |- N

Project Name: polarfire countlé

Location: U:\proj_v1l_8\polarfire_count16

Description:

Preferred HDL Type: Verilog

Device Details

-

Part Number : MPF200TS_ES-1FULLFEGE

Family : PolarFire

Die PF200TS_ES

Package ully Bonded Package
sSpeed

Core Voltage
Range

Figure 5 - Design Flow Window

12

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

The Design Flow Window

The Design Flow Window for each technology family may be slightly different. The Constraint Flow choice
made during new project creation may also affect the exact elements of design flow. However, all flows
include some version of the following design steps:

e Create

e Constrain

e Implement

e Program and Debug
e Handoff

Design Report

The Design Report Tab lists all the reports available for your design, and displays the selected report.

Reports are added automatically as you move through design development. For example, Timing reports
are added when you run timing analysis on your design. The reports are updated each time you run timing
analysis.

If the Report Tab is not visible, you can expose it at any time by clicking on the main menu item Design >
Reports

If a report is not yet listed, you may have to create it manually. For example, you must invoke Verify Power
manually before its report will be available.

Reports for the following steps are available for viewing here:
e Project Summary
e Synthesize
e Place and Route
e Verify Timin
e Verify Power
e Programming
o Generate FPGA Array Data
e Generate Bitstream
e Export
e Export Pin Report
e Export BSDL File

Using the New Project Wizard to Start a Project

New Project Creation Wizard — Project Details

You can create a Libero SoC project using the New Project Creation Wizard. You can use the pages in the
wizard to:

e Specify the project name and location

e Select the device family and parts

e Set the I/O standards

e Import HDL source files and/or design constraint files into your project

13

PolarFire Design Flow User Guide O Mfcmsem’.

Project

Power Matters.”

ol ¥ L. T T L4 boryls il

Project Details
Speafy Propect Detals

Project Datails

Proect Mama: 1

Project Locabsn C: foemp Erowss...
Device Selection

Descrphon
Device Settings f

Design Template Frefered HOL Type: | Veriog
Erabie Back Createn
Add HDL Sources

Add Constraints

Libefo)

patemon Chp

Figure 6 - Libero SoC New Project Creation Wizard

Project Name - Identifies your project name; do not use spaces or reserved Verilog or VHDL keywords.
Project Location — Identifies your project location on disk.

Description — General information about your design and project. The information entered appears in your
Datasheet Report View.

Preferred HDL type - Sets your HDL type: Verilog or VHDL. Libero-generated files (SmartDesigns,
SmartGen cores, etc.) are created in your specified HDL type. Libero SoC supports mixed-HDL designs.

Enable Block Creation - Enables you to build blocks for your design. These blocks can be assembled in
other designs, and may have already completed Layout and been optimized for timing and power
performance for a specific Microsemi device. Once optimized, the same block or blocks can be used in
multiple designs.

When you are finished, click Next to proceed to the Device Selection page.

See Also
New Project Creation Wizard - Device Selection

New Project Creation Wizard — Device Settings
New Project Creation Wizard — Add HDL Source Files
New Project Creation Wizard - Add Constraints

New Project Creation Wizard — Device Selection

The Device Selection page is where you specify the Microsemi device for your project. Use the filters and
drop-down lists to refine your search for the right part to use for your design.

This page contains a table of all parts with associated FPGA resource details generated as a result of a
value entered in a filter.

When a value is selected for a filter:
e The parts table is updated to reflect the result of the new filtered value.

14

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

o All other filters are updated, and only relevant items are available in the filter drop-down lists.

For example, when PolarFire is selected in the Family filter:

e The parts table includes only PolarFire parts.

e The Die filter includes only PolarFire dies in the drop-down list for Die.

(Y New project = mEE
& Device selection
i Select a part for your project from the part number list Selected part: MPF300T_ES-1FCG484E
2 A Part filter
Project Details
Family: [PalarFire Die: | All ~ | Package: _
Device Selection
Device Settings Search part:
Part Number *~ || DFF User 1/0s USRAM LSRAM Math H-Chip Global Z
MPF100TS_ES-1FULLPKGE | 108600 296 1008 352 336 48
Add HDL Sources MPF200TS_ES-1FULLPKGE 192408 368 1764 616 588 48
MPF300T ES-1FCG1152E | 299544 512 2772 952 924 48
MPF300T ES-1FCG484E 299544 244 2772 952 924 48
MPF300T_ES-1FCG784E 200544 388 2772 952 924 48
. MPF300T ES-1FCSG536E | 299544 300 2772 952 924 48
Add Constraints MPF300T ES-1FCVG4B4E 299544 284 2772 952 924 48 ||
MPF300T_ES-FCG1152E 209544 512 2772 952 924 48
MPF300T_ES-FCG4B4E 299544 244 2772 952 924 48
MPF300T_ES-FCG784E 290544 388 2032 952 924 48
- ’l\ MPF300T_ES-FCSG536E 299544 300 2772 952 924 48
MPF300T ES-FCVG4B4E 299544 284 2772 952 924 48 Ll
I ero MPF300TS ES-1FCG1152E | 299544 512 2772 952 924 48 (=]
Syremonchp Nl [« I D)
[= Back l [Next > l [Finish] [Cancel]

Figure 7 - New Project Creation Wizard - Device Selection Page

Family — Specify the Microsemi device family. Only devices belonging to the family are listed in the parts
table.

Die / Package / Speed - Select your device die, package, and speed grade. Use the Die/Package/Speed
filters to help in selection. The Die/Package/Speed grades available for selection depend on the level of
Libero SoC license (Evaluation/Silver/Gold/Platinum) - refer to the Libero SoC Licensing Web Page for
details.

Range - Define the voltage and temperature ranges a device may encounter in your application. Tools such
as SmartTime, SmartPower, timing-driven layout, power-driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.

Supported ranges include:
e All—Allranges
e EXT - All parts that support operating temperature range from 0 to 100 degrees Celsius
e IND — All parts that support operating temperature range from -40 to 100 degrees Celsius
Note: Supported operating condition ranges vary according to your device and package.
Refer to your device datasheet to find your recommended temperature range.
Reset Filters — Reset all filters to the default ALL option except Family.
Search Parts — Enter a character-by-character search for parts. Search results appear in the parts table.
When Device Selection is completed, click on:

e Next to proceed to the Device Settings page
OR

¢ Finish to complete New Project Creation with all remaining defaults.

New Project Creation Wizard — Device Settings

The Device Settings page is where you set the Device 1/0 Technology and Reserve pins for Probes.

15

https://www.microsemi.com/products/fpga-soc/design-resources/licensing

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

(® New project = | O] e S]

Device settings
Choose device settings for your project

Selected part: MPF200TS_ES-1FULLPKGE

Project Details Core Voltage :

1O settings

Default I/0 technology: LVCMOS 1.8V ~ | ¥ Please use the /O Editor to change individual I/ attributes.

Device Selection
Reserve pins for probes

Device Settings [system controller suspended mode

Add HDL Sources

Add Constraints

o 2IN
Libefg
l < Back] [Next >] [Finish I [Cancel

Figure 8 - New Project Creation Wizard — Device Settings Page
Core Voltage - Set the core voltage for your device.

Default I/O Technology - Set all your 1/Os to a default value. You can change the values for individual I/Os
in the I/O Attribute Editor. The I/O Technology available is family-dependent.

Reserve Pins for Probes - Reserve your pins for probing if you intend to debug using SmartDebug.

When you are finished, click Next to proceed to the next page, or click Finish to complete New Project
Creation with all remaining defaults.

New Project Creation Wizard — Add HDL Source Files

The Add HDL Source Files page is where you add HDL design source files to your Libero SoC project. The
HDL source files can be imported or linked to the Libero SoC Project.

@ New project ~ - = |[E] 'th

Add HDL source files
Specify HDL files to impart/link to your project.

Selected part: MPF200TS_ES-1FULLPKGE

File type File name File location

Device Selection

Device Settings

Add HDL Sources

Add Constraints

o 2IN
Libete
l < Back] [Next >] [Finish I [Cancel

Figure 9 - New Project Creation Wizard - Add HDL Source Files Page

16

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

Import File — Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL
file is copied to the Libero Project in the <prj_folder>/hdl folder.

Link File — Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file
is linked to the Libero Project. Use this option if the HDL source file is located and maintained outside of the
Libero project.
Delete - Delete the selected HDL source file from your project. If the HDL source file is linked to the Libero
project, the link will be removed.
When Add HDL Sources is completed, click on:

e Next to proceed to the Add Constraints page

OR
e Finish to complete New Project Creation.

New Project Creation Wizard - Add Constraints

The Add Constraints page is where you add Timing constraints and Physical Constraints files to your Libero
SoC project. The constraints file can be imported or linked to the Libero SoC Project.

(-'\ New project { =" [ET ﬁ]

Add constraints
Specify constraint files for timing or physical constraints.

Selected part: MPF200TS_ES-1FULLPKGE

Project Details Link file Delete
File type File name File location
Device Selection
Device Settings
Add HDL Sources
Add Constraints
Libefo"
System-on-Chip 7

Figure 10 - New Project Creation Wizard — Add Constraints Page

Import File — Navigate to the disk location of the constraints file. Select the constraints file and click Open.
The constraints file is copied to the Libero Project in the <prj_folder>/constraint folder.

Link File — Navigate to the disk location of the constraints file. Select the constraints file and click Open.
The constraints file is linked to the Libero Project. Use this option if the constraint file is located and
maintained outside of the Libero project.

Delete - Remove the selected constraints file from your project. If the constraints file is linked to the Libero
project, the link will be removed.

When Add Constraints is completed, click on:
e Finish to complete New Project Creation.
The Reports tab displays the result of the New Project creation.

17

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Reports & X | StartPage & X |

4 Project Summary
g5_prep_instlog

&3 0 Errors & 0 Warnings &b 0 Info

Project Name: g5_prep inst

Location: U:\proj_vll_8\g5 prep_ inst
Description:

Preferred HDL Type: Verilog

_ _ _ _ e
Device Details

- - - - _——

Part Number MPF200TS_ES-1FULLFERGE

Family : PolarFire

Die : MPF200TS ES

Package : Fully Bonded Package
Speed : -1

Core Voltage : 1.0

Range : EXT

Figure 11 - Reports Tab

18

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

Create and Verify Design

Create your design with any or all of the following design capture tools:
e Create SmartDesign
e Create HDL
e Create SmartDesign Testbench (optional, for simulation only)

e Create HDL Testbench (optional, for simulation only)

Create SmartDesign

About SmartDesign

SmartDesign is a visual block-based design creation/entry tool for the instantiation, configuration and
connection of Microsemi IPs, user-generated IPs, custom/glue-logic HDL modules. This tool provides a
canvas for instantiating and stitching together design objects. The final result from SmartDesign is a design-
rule-checked and automatically abstracted synthesis-ready HDL file. A generated SmartDesign can be the
entire FPGA design or a component subsystem to be re-used in a larger design.

The following design objects can be instantiated in the SmartDesign Canvas:
e Microsemi IP Cores
e User-generated or third-party IP Cores
e HDL design files
e HDL + design files
e Basic macros

e Other SmartDesign components (*.cxf files) generated from SmartDesign in the current Libero SoC
project or may be imported from other Libero SoC projects.

e Re-usable design blocks (*.cxz files) published from Libero SoC
For more information see the SmartDesign User Guide.

Create New SmartDesign

This SmartDesign component may be the top level of the design or it may be used as a lower level
SmartDesign component (after successful generation) in another design.

1. From the File menu, choose New > SmartDesign or in the Design Flow window or double-click Create
SmartDesign. The Create New SmartDesign dialog box opens.

Bl Create New SmartDesign

MName:
|
o

Figure 12 - Create New SmartDesign Dialog Box

2. Enter a name and click OK. The component appears in the Design Hierarchy tab of the Design
Explorer.
NOTE: The component name you choose much be unique in your project

For more information see the SmartDesign User Guide.

19

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartdesign_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartdesign_ug.pdf

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.

Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to
ensure synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

If the ports of a sub-design have changed, then the parent SmartDesign component will be annotated with
the icon 9 in the Design Hierarchy tab of the Design Explorer.

Generate Recursively vs. Non-Recursively
These options are set in the Project Preference Dialog Box - Design Flow Preferences section.

¢ Inthe "Recursive generation" mode, the Generate button will attempt to generate all sub-design
SmartDesigns, depth first. The parent SmartDesign will only be generated if all the sub-designs are
generated successfully.

¢ Inthe "Non-Recursive generation" mode, the Generate button will only attempt to generate the
specified SmartDesign. The generation can be marked as successful even if a sub-design is un-
generated (either never attempted or unsuccessful). An un-generated component will be annotated

with the icon in the Design Hierarchy tab of the Design Explorer.

Create Core from HDL

You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.

¢ If you have an HDL module that contains configurable parameters or generics.

e If your HDL module is intended to connect to a processor subsystem and has implemented the
appropriate bus protocol, then you can add a bus interface to your HDL module so that it can easily
connect to the bus inside of SmartDesign.

To create a core from your HDL:
1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.

2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and
choose Create Core from HDL.

The Edit Core Definition — Ports and Parameters dialog appears. It shows you which ports and
parameters were extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and
clicking the X icon. Remove parameters that are used for internal variables, such as state machine
enumerations.

If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to
reset the list so it matches your HDL module.

20

& Microsemi

Power Matters.”

PolarFire Design Flow User Guide

El Edit Core Definition - Ports and Parameters EHE
HOL: Ci\Documents and SettingsifarlevciDeskiopifarleve_Actelprjisoc_10spl_cc_hdlihdliMyAPE_Adder.w
Module: MyAPE_adder
Extracted Ports Extracted Parameters N
PCLE i |WIDTH
PRESETH SIZE
PADDR[4:0] APE_SIZE
PSEL FIFO_EMNABLE
PEMAELE COUNTER,_EMABLE
PWRITE

PROATA[7:0]
PYDATA[7:00]
PREADY
PSLYERR
TN_A[15:0]
N_E[15:0]
RESULT[15:0]
OWERFLOWY

Re-extract ports and parameters from HDL |

Help | AddfEdit bus interfaces. .. I

Figure 13 - Edit Core Definition - Ports and Parameters Dialog Box
(Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.

Ok | Cancel |

4.

After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click
and drag your HDL+ module from the Design Hierarchy to the Canvas.

If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface
pin that can be used to easily connect to the appropriate bus IP core.

If your HDL+ has configurable parameters then double-clicking the object on the Canvas (or right-click and
select Configure) invokes a configuration dialog that enables you to set these values. On generation, the
specific configuration values per instance are written out to the SmartDesign netlist.

b S S |

-

|| Configurator

. prep9_0
b

AS FEB
By E8 Configurator
B AH[T: DB
i Ch User:Private:prep9:1.0
i BE

AL
BE. Configuration |
e Cant
WIDTH: 16
Help 0K l ’ Cancel

Figure 14 - HDL+ Instance and Configuration Dialog Box
You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition

You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy
and clicking the HDL+ icon.

21

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Remove Core Definition

You may decide that you do not want or need the extended information on your HDL module. You can
convert it back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose
Remove Core Definition. After removing your definition, your instances in your SmartDesign that were
referencing this core must be updated. Right-click the instance and choose Replace Component for
Instance.

Designing with HDL

Create HDL

Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl
directory; all modules created in the file appear in the Design Hierarchy.

You can use VHDL and Verilog to implement your design.

To create an HDL file:

1. Inthe Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.

2. Select your HDL Type. Choose whether or not to Initialize file with standard template to populate
your file with default headers and footers. The HDL Editor workspace opens.

3. Enter a Name. Do not enter a file extension; Libero SoC adds one for you. The filename must follow
Verilog or VHDL file naming conventions.

4. Click OK.
After creating your HDL file, click the Save button to save your file to the project.

Using the HDL Editor

The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features,
the editor provides keyword highlighting, line numbering and a syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between
files.

Editing
Right-click inside the HDL Editor to open the Edit menu items. Available editing functions include cut, copy,

paste, Go to line, Comment/Uncomment Selection and Check HDL File. These features are also available in
the toolbar.

Saving

You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save
icon in the toolbar.

Printing
Print is available from the File menu and the toolbar.

Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that you use
one editor for all of your HDL edits.

HDL Syntax Checker

To run the syntax checker:

In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose
Check HDL File.

The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

22

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Commenting Text

You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a
group of text and applying the Comment command.
To comment or uncomment out text:

1. Type your text.

2. Select the text.

3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

Find

In the File menu, choose Find and the Find dialog box appears below the Log/Message window. You can
search for a whole word or part of a word, with or without matching the case.

You can search for:
e Match Case
e Match whole word
e Regular Expression
The Find to Replace function is also supported.

Column Editing

Column Editing is supported. Press ALT+click to select a column of text to edit.

Importing HDL Source Files

To import an HDL source file:

1. Inthe Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.

2. Navigate to the drive/folder that contains the HDL file.
3. Select the file to import and click Open.

Note: SystemVerilog (*.sv), Verilog (*.v) and VHDL (*.vhd/*.vhdl) files can be imported.

Mixed-HDL Support in Libero SoC

You must have ModelSim ME Pro to use mixed HDL in the Libero SoC. You must also have Synplify Pro to
synthesize a mixed-HDL design.

When you create a project, you must select a preferred language. The HDL files generated in the flow (such
as the post-layout netlist for simulation) are created in the preferred language.

The language used for simulation is the same language as the last compiled testbench. (For example, if
tb_top is in Verilog, <fam>.v is compiled.)

If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

Designing with Block Flow

For information about designing with Block Flow, see Designing with Blocks for Libero SoC Enhanced
Constraint Flow.

SmartDesign Testbench

SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use
SmartDesign Testbench to instantiate and connect stimulus cores or modules to drive your design.

23

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_block_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_block_flow_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

You can create a SmartDesign Testbench by right-clicking a SmartDesign component in the Design
Hierarchy and choosing Create Testbench > SmartDesign.

SmartDesign Testbench automatically instantiates the selected SmartDesign component into the Canvas.

You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new
SmartDesign testbench to your project.

New testbench files appear in the Stimulus Hierarchy.

SmartDesign Testbench automatically instantiates your SmartDesign component into the Canvas.

You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas
and connect them to your DUT (design under test). You can also instantiate Simulation Cores from the
Catalog. Simulation cores are simulation models (such as DDR memory simulation models) or basic cores
that are useful for stimulus generation (such as Clock Generator, Pulse Generator, or Reset Generator).
Click the Simulation Mode checkbox in the Catalog to view available simulation cores.

Refer to the SmartDesign User Guide for more information.

HDL Testbench

HDL Type

Name

You can create a HDL Testbench by right-clicking a SmartDesign in the Design Hierarchy and choosing
Create Testbench > HDL.

HDL Testbench automatically instantiates the selected SmartDesign into the Component.

You can also double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The
dialog box enables you to create a new testbench file and gives you the option to include standard testbench
content and your design data.

Set your HDL Type: Verilog or VHDL for the testbench.

Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

Clock Period (ns)

Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns
(10 MHz). Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the
simulation.

Set as Active Stimulus sets the HDL Testbench as the stimulus file to use for simulations. The active
stimulus file/testbench is included in the run.do file that Libero generates to drive the simulation. Setting one
testbench as the Active Stimulus is necessary when there are multiple testbenches in the stimulus hierarchy.

Initialize with Standard Template adds boilerplate for a minimal standard test module. This test module
does not include an instantiation of the root module under test.

Instantiate Root Design Creates a test module that includes an instance of the root module under test, and
clocking logic in the test module which drives the base clock of the root module under test.

24

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartdesign_ug.pdf

PolarFire Design Flow User Guide C Mlcrbse!m

Power Matters.”

=) Create New HDL Testbench File x

HDL Type

2 Verilog VHDL

Name:

Clock Period (ns) : | 100

+ Initialize file with standard template
+ Instantiate Root Design

¥ Set as Active Stimulus

. anncel q:?:;K

Figure 15 - Create New HDL Testbench File Dialog Box

B e e e e e e e e

2 | -- Created by Microsemi SmartDesign Mon Mar 27 15:087:29 2617

3 - Testbench Template

4 - This is a basic testbench that instantiates your design with basic

5 clock and reset pins connected. If your design has special

6 -- clock/reset or testbench driver requirements then you should

f | -- copy this file and modify it.

B | ------- - e — - -

g L

LB FJ------=== == mmmmmm e e e
11 - Company: <Name>

T | --

13 | -- File: counter_tb.vhd

14 | -- File history:

15 | - <Revision number=: <Date>: <Comments=

an | -- <Revision number=: <Date>: <Comments>

i7 | -- <Revision number>: <Date>: <Comments>

18

19 | -- Description:

20 | --

21 | -- <Description here>

] --

23 | -- Targeted device: <Family::PolarFire> <Die::MPF200TS_ES> <Package::Fully Bonded Package=>
24 | -- Author: =Name>

25

- e e
27

28 L

29 library ieee;
30 wuse ieee,std_logic_1164.all;

32 Tentlty counter_tb is

33 | end counter_tb;

34

35 Flarchitecture behavioral of counter_tb is

36

37 constant SYSCLK_PERIOD : time := 100 ns; -- 16MHZ
38

39 signal SYSCLK : std_logic := '@';

40 signal NSYSRESET : std_logic := '8';

41

42 component countl6

Figure 16 - HDL Testbench Example - VHDL, Standard Template and Root Design Enabled

Verify Pre-Synthesized Design - RTL Simulation

To perform pre-synthesis simulation, double-click Simulate under Verify Pre-Synthesized Design in the
Design Flow window. Alternatively, in the Stimulus Hierarchy right-click the testbench and choose Simulate
Pre-Synth Design > Run.

25

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

The default tool for RTL simulation in Libero SoC PolarFire is ModelSim™ ME Pro. ModelSim ME works
with all levels of Libero SoC license (Eval, Silver, Gold and Platinum) whereas ModelSim Pro ME works with
all levels of Libero SoC license except Silver.

ModelSim ME and ModelSim ME Pro are custom editions of ModelSim PE that are integrated into Libero
SoC's design environment. ModelSim for Microsemi is an OEM edition of Mentor Graphics ModelSim tools.
ModelSim ME Pro supports mixed VHDL, Verilog, and SystemVerilog simulation but ModelSim ME does
not. Both ModelSim editions only work with Microsemi simulation libraries and they are supported by
Microsemi.

Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim, do not install
ModelSim ME from the Libero SoC media.

Note: ModelSim for Microsemi includes online help and documentation. After starting ModelSim, click the
Help menu.

See the following topics for more information on simulation in Libero SoC:
e Simulation Options

e Selecting a Stimulus File for Simulation

¢ Selecting additional modules for simulation

e Performing Functional Simulation

Simulation Options

DO File

Waveforms

You can set a variety of simulation options for your project.

To set your simulation options:
1. From the Project menu, choose Project Settings.
2. Click the simulation option you wish to edit: DO file, Waveforms, or Vsim commands.
3. Click Close to save your settings.

e Use automatic Do file - Select to execute the wave.do or other specified Do file. Use the wave.do file
to customize the ModelSim Waveform window display settings.

e Simulation Run Time - Specify how long the simulation should run in nanoseconds. If the value is 0,
or if the field is empty, there will not be a run command included in the run.do file.

e Testbench module name - Specify the name of your testbench entity name. Default is “testbench,”
the value used by WaveFormer Pro.

e Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Libero SoC
replaces <top> with the actual top level macro when you run ModelSim.

e Generate VCD file - Select this checkbox to have ModelSim automatically generate a VCD file based
on the current simulation. VCD files can be_used in SmartPower. For best results, Microsemi
recommends that a postlayout simulation be used to generate the VCD.

e VCD filename - Specify the name of the VCD file that will be automatically generated by ModelSim

e User defined DO file - Available if you opt not to use the automatic DO file. Input the path or browse
to your user-defined DO file.

e DO Command parameters - Text in this field is added to the DO command.

¢ Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

e Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Libero SoC outputs the line 'add wave
ltestbench/*' in the DO file run.do. If you select DUT then Libero SoC outputs the line 'add wave
/testbench/*" in the run.do file.

26

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartpower_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Vsim Commands

Power Matters.”

Log all signals in the design - Saves and logs all signals during simulation.

SDF timing delays - Select Minimum, Typical, or Maximum timing delays in the back-annotated SDF
file.

Resolution: The default is 1 ps.

Some custom simulation resolutions may not work with your simulation library. Consult your
simulation help for more information on how to work with your simulation library and detect infinite
zero-delay loops caused by high resolution values.

Additional options: Text entered in this field is added to the vsim command.

Simulation Libraries

Verilog (or VHDL) library path - Enables you to choose the default library for your device, or to
specify your own library. Enter the full pathname of your own library to use it for simulation.

Restore Defaults: Restores factory settings.

Selecting a Stimulus File for Simulation

Before running simulation, you must associate a testbench. If you attempt to run simulation without an
associated testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim
without a testbench.

To associate a stimulus:

1.

Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click
Simulate and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files
dialog box appears.

Associate your testbench(es):

In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in
the Project list box and click Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation.

If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.

Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add
them to the Associated Stimulus Files list

27

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Performing Functional Simulation

To perform functional simulation:

1.
2.

Create your testbench.

Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis
Implementation > Simulate) and choose Organize Input Files > Organize Simulation Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in
the Project list box and click Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

When you are satisfied with the Associated Simulation Files list, click OK.

To start ModelSim ME Pro, right-click Simulate in the Design Hierarchy window and choose Open
Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the
simulator runs for 1 us and the Wave window opens to display the simulation results.

Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

From the File menu, select Quit.

28

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

Libero SoC Constraint Management

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of
the design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing
FDC constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing
constraints guide the tool to achieve the timing requirements whereas Physical Design Constraints (PDC)
guide the tool for optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing
constraints set the timing requirements and design-specific timing exceptions for static timing analysis.

Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is
a single centralized graphical interface for you to create, import, link, check, delete, edit design constraints
and associate the constraint files to design tools in the Libero SoC environment. The Constraint Manager
allows you to manage constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the
SmartTime Timing Analysis throughout the design process.

Invocation of Constraint Manager From the Design Flow Window

After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint

Manager.
| Reports & X | my_usersdc & X | Constraint Manager & % | mddr_top_sh_CCC_0_FCCC.sdc & X | =
1/0 Attributes \/ Timing "/ Floor Planner "/ Netlist Attributes _., b Constraints Tab
~
[MNew] [Impart] [Link] [Editwiﬂ’w Constraint Editor '] [Chedk 'I [Derive Consiraints] [ConstraintCoverage '] [Help] b ’
—""
r Synthesis Place and Route Timing Verification
constraint\ top_derived_constraints.sdc
constraint\my.sdc o 0= |
constraint\my_usersdc 0 []
NG

Constraints
File Order
File and Tool Association

Figure 17 - Constraint Manager

29

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

Libero SoC Design Flow

The Constraint Manager is Libero SoC'’s single centralized Graphical User Interface for managing
constraints files in the design flow.

Create Testbench .
Create Design

1 Constraint
i Manager
—| PreSy nthesis
Simulation Pre-Synthesis constraints
I‘ A Derived Constraints SDC
Implement
Testbench - userlsde
Fmmmmm——— : [T % Netlist Attributes FDC/NDC
| Post-Synthesis | -
- : Simulation :< 1o Place & Route Constraints
(Optional) Derived Constraints SDC
| | Place and R
—————— | 2ce and floute +'\~—-___h user2.sde
| Post-Layout | I/0 PDC
- Simulation Kefr ettt Floor Planning PDC
' Optional | iy Timi
L {Qptional) 1 | venlty imine 4\ Timing Verification Constraints
Detived Constraints SDC
user3.sdc
A J
Program and Debug Design
Generate Bitstream
Program Device
SmartDebug
v
Handoff for Firmware Dev.
Handoff for Production
Security Options
Handoff for Debugging

Figure 18 - Constraint Manager in Libero SoC Design Flow

Introduction to Constraint Manager

Synthesis Constraints
The Constraint Manager manages these synthesis constraints and passes them to SynplifyPro:
o Synplify Netlist Constraint File (*.fdc)
e Compile Netlist Constraint File (*.ndc)
e SDC Timing Constraints (*.sdc)
e Derived Timing Constraints (*.sdc)

30

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Synplify Netlist Constraints (*.fdc)

These are non-timing constraints that help SynplifyPro optimize the netlist. From the Constraint Manager
Netlist Attribute tab import (Netlist Attributes > Import) an existing FDC file or create a new FDC file in the
Text Editor (Netlist Attributes > New > Create New Synplify Netlist Constraint). After the FDC file is
created or imported, click the checkbox under synthesis to associate the FDC file with Synthesis.

Compile Netlist Constraints (*.ndc)

These are non-timing constraints that help Libero SoC optimize the netlist by combining 1/0Os with registers.

1/0s are combined with a register to achieve better clock-to-out or input-to-clock timing. From the Constraint
Manager Netlist Attribute tab import (Netlist Attributes > Import) an existing NDC file or create a new NDC
file in the Text Editor (Netlist Attributes > New > Create New Compile Netlist Constraint). After the NDC
file is created or imported, click the checkbox under synthesis to associate the NDC file with Synthesis.

SDC Timing Constraints (*.sdc)

These are timing constraints to guide SynplifyPro to optimize the netlist to meet the timing requirements of
the design. From the Constraint Manager Timing tab, import (Timing > Import) or create in the Text Editor
(Timing > New) a new SDC file. After the SDC file is created or imported, click the checkbox under
synthesis to associate the SDC file with Synthesis.

After the synthesis step, you may click Edit with Constraint Editor > Edit Synthesis Constraints to edit
existing constraints or add new SDC constraints.

Derived Timing Constraints (*.sdc)

These are timing constraints LiberoSoC generates for IP cores used in your design. These IP cores,
available in the Catalog, are family/device-dependent. Once they are configured, generated and instantiated
in the design, the Constraint Manager can generate SDC timing constraints based on the configuration of
the IP core and the component SDC. From the Constraint Manager Timing tab, click Derive Constraints to
generate the Derived Timing Constraints (*.sdc). Click the *derived_constraints.sdc file to associate it with
synthesis.

Place and Route Constraints
The Constraint Manager manages these constraints for the Place-and-Route step:
e |/O PDC Constraints (*io.pdc)
e Floorplanning PDC Constraints (*fp.pdc)
e Timing SDC constraint file (*.sdc)

1/0 PDC Constraints

These are 1/0 Physical Design Constraints in an *io.pdc file. From the Constraint Manager 1/O Attribute tab,
you may import (I/O Attributes > Import) or create in the Text Editor (I/O Attributes > New) an *io.pdc file.

Click the checkbox under Place and Route to associate the file with Place and Route.
Floorplanning PDC Constraints

These are floorplanning Physical Design Constraints in a *fp.pdc file. From the Constraint Manager Floor
Planner tab, you may import (Floor Planner > Import) or create in the Text Editor (Floor Planner > New) a
*fp.pdc file. Click the checkbox under Place and Route to associate the file with Place and Route.

31

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Timing SDC Constraint file (*.sdc)

These are timing constraint SDC files for Timing-driven Place and Route. From the Constraint Manager
Timing tab, you may import (Timing > Import) or create in the Text Editor (Timing > New) a timing SDC
file. Click the checkbox under Place and Route to associate the SDC file with Place and Route. This file is
passed to Timing-driven Place and Route (Place and Route > Configure Options > Timing Driven).

Timing Verifications Constraints

The Constraint Manager manages the SDC timing constraints for Libero SoC’s SmartTime, which is a
Timing Verifications/Static Timing analysis tool. SDC timing constraints provide the timing requirements (e.g.
create_clock and create_generated_clock) and design-specific timing exceptions (e.g. set_false_path and
set_multicycle_path) for Timing Analysis.

From the Constraint Manager Timing tab, you may import (Timing > Import) or create in the Text Editor
(Timing > New) a SDC timing file. Click the checkbox under Timing Verifications to associate the SDC
timing constraints file with Timing Verifications.

Note: You may have the same set of SDC Timing Constraints for Synthesis, Place and Route and Timing
Verifications to start with in the first iteration of the design process. However, very often and particularly
when the design is not meeting timing requirements you may find it useful in subsequent iterations to have
different sets of Timing SDC files associated with different tools. Take for example; you may want to
change/modify the set of SDC timing constrains for Synthesis or Place and Route to guide the tool to focus
on a few critical paths. The set of SDC timing constraints associated with Timing Verifications can remain
unchanged.

The Constraint Manager lets you associate/dis-associate the constraint files with the different tools with a
mouse click.

Constraint Manager Components
The Constraint Manager has four tabs, each corresponding to a constraint type that Libero SoC supports:
e 1/O Attributes
e Timing
e Floor Planner
¢ Netlist Attribute
Clicking the tabs displays the constraint file of that type managed in the Libero SoC project.

Constraint File and Tool Association

Each constraint file can be associated/dis-associated with a design tool by checking and unchecking the
checkbox corresponding to the tool and the constraint file. When associated with a tool, the constraint file is
passed to the tool for processing.

"
170 Attributes \/ Timing \/ Fioor Planner \/ Netlist Attributes |

New Import Link Edit with Constraint Editor {v| | Check i" Derive Constraints | | Constraint Coverage ?V Help + %
Synthesis Place and Route Timing Verification
constraint/user.sdc L4 L4 L
constraint/mytiming2.sdc d «
constraint/myuserl . sdc o Ll

Figure 19 - Constraint File and Tool Association

Note: Libero SoC’s Design Flow window displays the state the tool is in. A green check mark lf indicates

successful completion. A warning icon . indicates invalidation of the state because the input files for the
tool have changed since the last successful run. Association of a new constraint file with a tool or dis-
association of an existing constraint file with a tool invalidates the state of the tool with which the constraint
file is associated.

All Constraint files except Netlist Attributes can be opened, read and edited by Interactive Tools invoked
from the Constraint Manager directly. The Interactive Tools are:

32

PolarFire Design Flow User Guide

e |/O Editor
e Chip Planner
e Constraint Editor

& Microsemi

Power Matters.”

Constraint Constraint File | Location inside Project | Associated with Design | Interactive Tool
Type Extension Tool (For Editing)
I/O Attributes PDC (*.pdc) <proj>\constraints\io*.pdc | Place and Route 1/0O Editor
Floorplanning PDC (*.pdc) <proj>\constraints\fp*.pdc | Place and Route Chip Planner
Timing SDC (*.sdc) <proj>\constraints*.sdc Synthesis, Place and Constraint Editor
Route, Timing Verification
Netlist Attributes | FDC (*.fdc) <proj>\constraints*.fdc Synthesis n/a
NDC (*.ndc) <proj>\constraints*.ndc Synthesis n/a

Derive Constraints in Timing Tab

The Constraint Manager can generate timing constraints for IP cores used in your design. These IP cores,
available in the Catalog, are family/device-dependent. Once they are configured, generated and instantiated
in your design, the Constraint Manager can generate SDC timing constraints based on the configuration of
the IP core and the component SDC. A typical example of an IP core for which the Constraint Manager can
generate SDC timing constraints is the IP core for Clock Conditioning Circuitry (CCC).

Create New Constraints

From the Constraint Manager, create new constraints in one of two ways:

e Use the Text Editor
e Use Libero SoC's Interactive Tools

To create new constraints from the Constraint Manager using the Text Editor:
1. Select the Tab that corresponds to the type of constraint you want to create.

Click New.

When prompted, enter a file name to store the new constraint.

Enter the constraint in the Text Editor.

Click OK.
The Constraint file is saved and visible in the Constraint Manager in the tab you select:

e /O Attributes constraint file (<proj>\io*.pdc) in the 1/O Attributes tab
e Floorplanning constraints (<proj>\fp*.pdc) in the Floor Planner tab
e Timing constraints (<proj>\constraints*.sdc) in the Timing tab

6. (Optional) Double-click the constraint file in the Constraint Manager to open and add more constraints
to the file.

ok wDd

To create new constraints from the Constraint Manager using Interactive Tools:

Note: Netlist Attribute constraints cannot be created by an Interactive Tool. Netlist Attribute files can only be
created with a Text Editor.

Note: Except for timing constraints for Synthesis, the design needs to be in the post-synthesis state to
enable editing/creation of new constraints by the Interactive Tool.

Note: The *.pdc or *.sdc file the Constraint Manager creates is marked [Target]. This denotes that it is the
target file. A target file receives and stores new constraints from the Interactive Tool. When you have
multiple constraint files of the same type, you may select any one of them as target. When there are multiple

33

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

constraint files but none of them is set as target, or there are zero constraint files, Libero SoC creates a new
file and set it as target to receive and store the new constraints created by the Interactive Tools.

1. Select the Tab that corresponds to the type of constraint you want to create.

Click Edit to open the Interactive Tools. The Interactive Tool that Libero SoC opens varies with the
constraint type:

e |/O Editor to edit/create 1/0O Attribute Constraints. See PolarFire |/O Editor User Guide for details.

¢ Chip Planner to edit/create Floorplanning constraints. See PolarFire Chip Planner User Guide for
details.

e Constraint Editor to edit/create Timing Constraints. See Timing Constraints Editor User Guide for
details.

3. Create the Constraints in the Interactive Tool. Click Commit and Save.

4. Check that Libero SoC creates these file to store the new constraints:
e Constraints\io\user.pdc file when I/O constraints are added and saved in I/O Editor.
e Constraints\fpl\user.pdc file when floorplanning constraints are added and saved in Chip Planner.
e Constraints\user.sdc file when Timing Constraints are added and saved in Constraint Editor

Constraint File Order

When there are multiple constraint files of the same type associated with the same tool, use the Up and
Down arrow to arrange the order the constraint files are passed to the associated tool. Constraint file order
is important when there is a dependency between constraints files. When a floorplanning PDC file assigns a
macro to a region, the region must first be created and defined. If the PDC command for region creation and
macro assignment are in different PDC files, the order of the two PDC files is critical.

1. To move a constraint file up, select the file and click the Up arrow.
2. To move a constraint file down, select the file and click the Down arrow.

(10 Attributes \/ Timing \/ Ficor Planner '/ Netiist Attributes \

New | Import Link Edit with Constraint Editor |v Check v Derive Constraints . = Constraint Coverage :' Help + |4
Synthesis Place and Poutt Timing Verification EMD“E Up
constraint/top_derived_constraints.sdc | v L4
constraint/user.sdc v v
constraint/mytiming.sde ¥ 04
constraint/mytiming2.sdc L4 v Ll
constraint/sdfsadf.sdc

Figure 20 - Move constraint file Up or Down

Note: Changing the order of the constraint files associated with the same tool invalidates the state of that
tool.

Import a Constraint File

Use the Constraint Manager to import a constraint file into the Libero SoC project. When a constraint file is
imported, a local copy of the constraint file is created in the Libero Project.
To import a constraint file:

1. Click the Tab corresponding to the type of constraint file you want to import.

2. Click Import.

3. Navigate to the location of the constraint file.

4

Select the constraint file and click Open. A copy of the file is created and appears in Constraint
Manager in the tab you have selected.

Link a Constraint File

Use the Constraint Manager to link a constraint file into the Libero SoC project. When a constraint file is
linked, a file link rather than a copy is created from the Libero project to a constraint file physically located
and maintained outside the Libero SoC project.

34

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

To link a constraint file:
1. Click the Tab corresponding to the type of constraint file you want to link.
2. Click Link.
3. Navigate to the location of the constraint file you want to link to.
4

Select the constraint file and click Open. A link of the file is created and appears in Constraint
Manager under the tab you have selected. The full path location of the file (outside the Libero SoC
project) is displayed.

Check a Constraint File
Use the Constraint Manager to check a constraint file.
To check a constraint file:

1. Select the tab for the constraint type to check.
2. Click Check.
Note: I/O constraints, Floorplanning constraints, Timing constraints, and Netlist Attributes can be checked

only when the design is in the proper state. A pop-up message appears when the check is made and the
design state is not proper for checking.

%] Information @

{0} Please run 'Synthesize' before executing Check Operation

- s

All constraint files associated with the tool are checked. Files not associated with a tool are not checked.
For Timing Constraints, select from the Check drop-down menu one of the following:

e Check Synthesis Constraints
e Check Place and Route Constraints
e Check Timing Verification Constraints

{170 Attributes \/ Timing \/"Fioor Planner \/_Netlist Attributes \

New Import | Link Edit with Constraint Editor H | Check "' | Derive Constralnis! | Constraint Coverage E' 1 Help T+ +
Synthesis Face al Check Synthesis Constraints
constraint/top_derived_constraints.sdc b Cd Check Place And Route Constraints
constraint/user.sdc ad Check Timing Verification Constraints
constraint/mytiming.sdc w g
constraint/mytiming2.sdc o o v

constraint/sdfsadf.sdc

Figure 21 - Check Constraints
Check Synthesis Constraints checks only the constraint files associated with the Synthesis.
Check Place and Route Constraints checks only the constraint files associated with Place and Route

Check Timing Verification Constraints checks only the Constraint Files associated with Timing
Verification.

For the constraint files and tool association shown in the SDC file and Tool Association Figure below:
e Check Synthesis Constraints checks the following files:
e top_derived_constraints.sdc
e user.sdc
e mytiming2.sdc
e Check Place and Route Constraints checks the following files:
e top_derived_constraints.sdc

35

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

e mytiming.sdc
e mytiming2.sdc
e Check Timing Verification Constraints checks the following files:

e top_derived_constraints.sdc
e user.sdc
e mytiming.sdc
e mytiming2.sdc

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

{170 Attributes \/” Timing \{ Floor Planner \/” Netiist Attributes \

k

New Import | Link | Edit with Constraint Editor |lv ‘ Check i' Derive Conslmin(sl Constraint Coverage I" Help + ¥
Synthesis Place and Routs Timing Verification
constraint/top_derived_canstraints.sdc td td 4
constraintfuser.sdc | |
constraint/mytiming.sdc L v
constraint/mytiming2.sdc o4 'l v

constraint/sdfsadf sdc

Figure 22 - Timing Constraints SDC file and Tool Association
When a constraint file is checked, the Constraint Manager:
e Checks the SDC or PDC syntax.

e Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in
the netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g. constraints on a design object which
does not exist in the netlist) are flagged as errors and reported in the *.log file or message window.

Check Result

If the check is successful, this message pops up.

7| Information Iél

Figure 23 - Check Successful Message
If the check fails, this error message pops up.

’EI Error @

e .
IQI Chedking of Timing constraints assodated with Timing Verification failed. See the message window for more details.
. r

Figure 24 - Check Fails Message

Constraint Type Check for Tools Required Netlist Check Result Details
Design State Used for
Before Checks Checks

I/O Constraints Place and Route Post-Synthesis | ADL Netlist | Libero Message Window

Floorplanning Place and Route Post-Synthesis | ADL Netlist | Libero Message Window
Constraints

36

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Constraint Type Check for Tools Required Netlist Check Result Details
Design State Used for
Before Checks Checks

Timing Constraints Synthesis Pre-Synthesis | RTL Netlist | synthesis_sdc_check.log

Place and Route Post-Synthesis | ADL Netlist | placer_sdc_check.log

Timing Verifications | Post-Synthesis | ADL Netlist | timing_sdc_check.log

Netlist Attributes (*.fdc) Synthesis Pre-Synthesis | RTL Netlist | *cck.srr file

Netlist Attributes (*.ndc) | Synthesis Pre-Synthesis | RTL Netlist | Libero Log Window

Edit a Constraint File
The Edit button in the Constraint Manager allows you to:

¢ Create new constraint files. See To create new constraints from the Constraint Manager using the Text
Editor for details.

e Edit existing constraint files.

To edit a constraint file

Note: Netlist Attributes cannot be edited by an Interactive Tool. Use the Text Editor to edit the Netlist
Attribute constraint (*.fdc and *.ndc) files.

1. Select the tab for the constraint type to edit. An Interactive Tool is opened to make the edits.

2. Click Edit.
e All constraint files associated with the tool are edited. Files not associated with the tool are not
edited.

¢ When a constraint file is edited, the constraints in the file are read into the Interactive Tool.
o Different Interactive Tools are used to edit different constraints/different files:

1. 1/O Editor to edit I/O Attributes (<proj>\io*.pdc). For details, refer to the PolarFire I/O Editor
User Guide.

2. Chip Planner to edit Floorplanning Constraints (<proj>\fp*.pdc). For detalils, refer to the
Chip Planner User's Guide (Chip Planner > Help > Reference Manuals)

3. Constraint Editor to edit Timing Constraints (constraints*.sdc). For details, refer to the
Timing Constraints Editor User's Guide (Help > Constraints Editor User’s Guide)

Note: I/O constraints, Floorplanning constraints, Timing constraints can be edited only when the design is in
the proper state. A message pops up if the file is edited when the design state is not proper for edits. If, for
example, you open the Constraints Editor (Constraint Manager > Edit) to edit timing constraints when the
design state is not post-synthesis, a pop-up message appears.

5| Information &

[0] Please run ‘Synthesize' before executing Edit Operation

Figure 25 - Pop-up Message

3. For Timing Constraints, click one of the following to edit from the Edit with Constraint Editor drop-down
menu.

e Edit Synthesis Constraints

37

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

e Edit Place and Route Constraints

e Edit Timing Verification Constraints
{170 Attributes \/ Timing \{ Floor Planner \/ Netlist Attributes \

New Import Link || Edit with Constraint Editor ¥ | Check [v|| Derive Canstraints | | Constraint Coverage [v Help T+

Edit Synthesis Constraints [Timing Verification

constraint/top_derived_constraints.sdc Edit Place And Boute Constraints &
constraintfuser.sdc Edit Timing Verititation Constraints |[¥
L w o

constraint/mytiming.sdc
constraint/mytiming2 sdc o v b
constraint/sdfsadf.sdc

Figure 26 - Edit Drop-down Menu
For the constraint files and tool association shown in the Timing Constraint File and Tool Association below:
¢ Edit Synthesis Constraints reads the following files into the Constraint Editor:
e user.sdc
e myuserl.sdc
e Edit Place and Route Constraints reads the following files into the Constraint Editor:
e user.sdc
e mytiming2.sdc
e myuserl.sdc
e Edit Timing Verification Constraints reads the following files into the Constraint Editor:
e user.sdc
e mytiming2.sdc
¥-/0 Attributes \/ Timing \/ Fioar Planner \/ Netist Attrbutes \

New Import Link Edit with Constraint Editor "' Check ['v: Derive Constraints | | Constraint Coverage |'v Help T+ |+
Synthesis Place and Routt Timing Verification
constraint/user.sdc L o v
constraint/mytiming2.sdc o 4
constraint/myuserl.sdc i il

Figure 27 - Timing Constraint File and Tool Association
4. Edit the constraint in the Interactive Tool, save and exit.
5. The edited constraint is written back to the original constraint file when the tool exits.
Refer to the Timing Constraints Editor User's Guide (Help > Constraints Editor User’s Guide) for details on
how to enter/modify timing constraints.
Note: When a constraint file is edited inside an Interactive Tool, the Constraint Manager is disabled until the
Interactive Tool is closed.

Note: Making changes to a constraint file invalidates the state of the tool with which the constraint file is
associated. For instance, if Place and Route has successfully completed with user.sdc as the associated
constraint file, then making changes to user.sdc invalidates Place and Route. The green checkmark
(denoting successful completion) next to Place and Route turns into a warning icon when the tool is
invalidated.

See Also:
PolarFire FPGA Design Constraints User Guide

Constraint Types

Libero SoC manages four different types of constraints:

e /O Attributes Constraints — Used to constrain placed I/Os in the design. Examples include setting
1/0 standards, I/O banks, and assignment to Package Pins, output drive, and so on. These constraints
are used by Place and Route.

e Timing Constraints — Specific to the design set to meet the timing requirements of the design, such
as clock constraints, timing exception constraints, and disabling certain timing arcs. These constraints
are passed to Synthesis, Place and Route, and Timing Verification.

38

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_des_constraints_ug.pdf

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Floor Planner Constraints — Non-timing floorplanning constraints created by the user or Chip Planner
and passed to Place and Route to improve Quality of Routing.

Netlist Attributes - Microsemi-specific attributes that direct the Synthesis tool to synthesize/optimize
the, leveraging the architectural features of the Microsemi devices. Examples include setting the
fanout limits, specifying the implementation of a RAM, and so on. These constraints are passed to the

Synthesis tool only.

The following table below summarizes the features and specifics of each constraint type.

Constraint File Location File User Constraints Edited | Constraints | Changes
Type Ext. Actions By Used By Invalidat
e
Design
State?
I/1O <proj>/constraints/io | *.pdc | Create New, |1/O Editor Place and YES
Attributes folder Import, Link, Route
Edit, Check | Or user editing the
*.pdc file in Text
Editor
Timing <proj>/constraints *.sdc | Create New, | Constraint Editor Synplify YES
Constraints | folder Import, Link, Pl d
Edit, Check | Or user editing the R(?St?ean
*.sdc file in Text Editor
Verify Timing
(SmartTime)
Floor <proj>/constraints/fp | *.pdc | Create New, | Chip Planner Place and YES
Planner folder Import, Link, Route
Constraints Edit, Check Or user Editing the
*.pdc file in Text
Editor
Netlist <proj>/constraints *fdc | Create New, | Userto Openin Text | Synplify YES
Attributes folder Import, Link, | Editor to Edit
Check
Netlist <proj>/constraints *ndc | Import, Link, | User to Open in Text | Synplify YES
Attributes folder Check Editor to Edit

Constraint Manager — I/O Attributes Tab

The I/O Attributes tab allows you to manage 1/O attributes/constraints for your design’s Inputs, Outputs, and
Inouts. All I/O constraint files (PDC) have the *.pdc file extension and are placed in the

<Project_location>/constraint/io folder.

Available actions are:

New — Creates a new I/0O PDC file and saves it into the <Project_location>\constraint\io folder. There

are two options:

e Create New I/O Constraint

e Create New I/O Constraint From Root Module -- This will pre-populate the PDC file with
information from the Root Module

Having selected the create method:
¢ When prompted, enter the name of the constraint file.
e The file is initially opened in the text editor for user entry.

39

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Import — Imports an existing I/O PDC file into the Libero SoC project. The I/O PDC file is copied into
the <Project_location>\constraint\io folder.

Link — Creates a link in the project’s constraint folder to an existing 1/0 PDC file (located and
maintained outside of the Libero SoC project).

Edit with 1/0O Editor — Opens the 1/0 Editor tool to modify the 1/0 PDC file(s) associated with the Place
and Route tool.

Check — Checks the legality of the PDC file(s) associated with the Place and Route tool against the
gate level netlist.

When the I/O Editor tool is invoked or the constraint check is performed, all files associated files with the
Place and Route tool are being passed for processing.

When you save your edits in the /O Editor tool, the I/O PDC files affected by the change will be updated to
reflect the change you have made in the 1/O Editor tool. New I/O constraints you add in the I/O Editor tool
are written to the Target file (if a target file has been set) or written to a new PDC file (if no file is set as
target) and stored in the <project>\constraint\io folder.

[T/E Aisibutes \{ Timing \/ Flosr larrer \/ Tetist Airbutes \

[e [v] [import Link Edt v [Ched Help 1+ +
Place and Route
constraint\ic\ddr_ioa_placement.pde]
constraint\io\user.pdc [Target] v
constraint\ic\tmp_extra_cst_528463.pdc
a8

| Reserve Pins for Device Migration
Select the devices you are targetting for migration, Pins not bonded on these devices wil be reserved in the device selected for this project,
Selected Device: MPF300TS_ES - FOG1152

MPF300T_ES

Target Devices:

General

/| Reserve Pins for Probes

Figure 28 - Constraint Manager — I/O Attributes Tab

Right-click the I/O PDC files to access the available actions:

Set/UnSet as Target — Sets or clears the selected file as the target to store new constraints created in
the 1/O Editor tool. Newly created constraints only go into the target constraint file. Only one file can be
set as target.

Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

Clone — Copies the file to a file with a different name. The original file name and its content remain
intact.

Rename — Renames the file to a different name.
Copy File Path - Copies the file path to the clipboard.
Delete From Project and Disk — Deletes the file from the project and from the disk.

Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint
\io folder. This selection is available only for linked constraints files.

File and Tool Association
Each I/O constraint file can be associated or disassociated with the Place and Route tool.
Click the checkbox under Place and Route to associate/disassociate the file from the tool.

40

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

I/O Settings

Reserve Pins for Device Migration — This option allows you to reserve pins in the currently selected device
that are not bonded in a device or list of devices you may later decide to migrate your design to. Select the
target device(s) you may migrate to later to ensure that there will be no device/package incompatibility if you
migrate your design to that device.

Reserve Pins for Probes — Check this box if you plan to use live probes when debugging your design with
SmartDebug.

Constraint Manager — Timing Tab

The Timing tab allows you to manage timing constraints throughout the design process. Timing constraints
files (SDC) have the *.sdc file extension and are placed in the <Project_location>\constraint folder.

Available actions are:
e New — Creates a new timing SDC file and saves it into the <Project_location>\constraint folder.
e When prompted, enter the name of the constraint file.
e The file is initially opened in the text editor for user entry.

e Import — Imports an existing timing SDC file into the Libero SoC project. The timing SDC file is copied
into the <Project_location>\constraint folder.

e Link — Creates a link in the project’s constraint folder to an existing timing SDC file (located and
maintained outside of the Libero SoC project).

e Edit with Constraint Editor — Opens the Timing Constraints Editor (see Timing Constraints Editor
User Guide for details) to modify the SDC file(s) associated with one of the three tools:

e Synthesis — When selected, the timing SDC file(s) associated with the Synthesis tool is loaded
in the constraints editor for editing.

¢ Place and Route - When selected, the timing SDC file(s) associated with the Place and Route
tool is loaded in the constraints editor for editing.

e Timing Verification - When selected, the timing SDC file(s) associated with the Timing
Verification tool is loaded in the constraints editor for editing.

e Check — Check the legality of the SDC file(s) associated with one of the three tools described below:
e Synthesis — The check is performed against the pre-synthesis HDL design.
e Place and Route — The check is performed against the post-synthesis gate level netlist.
e Timing Verification — The check is performed against the post-synthesis gate level netlist.

e Derive Constraints — When clicked, Libero generates a timing SDC file based on user configuration of
IP core, components and component SDC. It generates the create_clock and create_generated_clock
SDC timing constraints. This file is named <top_level_> derived_constraints.sdc. The component SDC
and the generated <root>_derived_constraint.sdc files are dependent on the IP cores and vary with
the device family.

Examples:

create -name {REF_CLK_PAD_O} -period 5 [get _ports { REF_CLK_PAD_O }]
create_generated_clock -name {PF_TX_ PLL_O/txpll_isnt_0/DIV_CLK} -
divide_by 2 -source [get_pins { PF_TX_PLL_O/txpll_isnt_O/REF CLK P } 1 L[
get_pins { PF_TX_PLL_O/txpll_isnt_0/DIV_CLK } 1]

e Constraint Coverage - When clicked, a pull-down list displays. Select the Constraint Coverage
Reports you want:

e Generate Place and Route Constraint Coverage Report
e Generate Timing Verification Constraint Coverage Report

Note: Constraint Coverage Reports can be generated only after synthesis. A warning message
appears if the design is not in the post-synthesis state when this button is clicked.

The generated report will be visible in the respective nodes of the report view (Design > Reports).

41

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

When the SmartTime Constraint Editor tool is invoked or the constraint check is performed all the files
associated with the targeted tool — Synthesis, Place and Route, Timing Verification — are being passed for
processing.

When you save your edits in the SmartTime Constraint Editor tool, the timing SDC files affected by the
change are updated to reflect the changes you have made in the SmartTime Constraints Editor tool. New
timing constraints you add in the SmartTime Constraint Editor tool are written to the Target file (if a target file
has been set) or written to a new SDC file (if no file is set as target) and stored in the <project>\constraint
folder.

Reports @ X | StartPage & X B of_pcie_to_dck3_top & X ConstraintManager @& X of pce_to_ddr3_top_derived_constraints.sdc & X

(15 Atbibutes \/ Timng \/ Fioor Planner "\/ Nefist Atirbutes \

New || Impoct || Unk | Edit with Constraint Editor |w| | Check v [Derive Constraints | Constraint Coverage | Help |
Synthesis Place and Route Timing Verification
constraint\pf_pcie_to_ddr3_top_derived_constraints.sde [V ' Fl
constraint\mytiming2.sdc /| it
constraint\myuserl sde v i

Figure 29 - Constraint Manager — Timing Tab
Right-click the timing SDC files to access the available actions for each constraint file:

e Set/Unset as Target — Sets or clears the selected file as the target to store new constraints created in
the SmartTime Constraint Editor tool. Newly created constraints only go into the target constraint file.
Only one file can be set as target, and it must be a PDC or SDC file. This option is not available for the
derived constraint SDC file.

e Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

e Clone - Copies the file to a file with a different name. The original file name and its content remain
intact.

¢ Rename - Renames the file to a different name.
e Copy File Path - Copies the file path to the clipboard.
e Delete From Project and Disk - Deletes the selected file from the project and from the disk.

e Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint
folder. This selection is available only for linked constraints files

File and Tool Association

Each timing constraint file can be associated or disassociated with any one, two, or all three of the following
tools:

e Synthesis
e Place and route
e Timing Verification

Click the checkbox under Synthesis, Place and Route, or Timing Verification to associate/disassociate
the file from the tool.

When a file is associated, Libero passes the file to the tool for processing.

Example

[1/0 Attributes \/ Timing \/" Floor Planner \/” Netlist Attributes \

k

New | Import Link Edit with Constraint Editor i' Check ’L' Derive Constraints | | Constraint Coverage |!v Help 4 I
Synthesis Place and Routt Timing Verification
constraint/top_derived_constraints.sdc v v v
constraint/user.sdc v v
constraint/mytiming.sdc v ¥
constraint/mytiming2.sdc v v S

constraint/sdfsadf.sdc

Figure 30 - File and Tool Association Example

42

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

In the context of the graphic above, when Edit Synthesis Constraint is selected, user.sdc,
top_derived_constraints.sdc, and mytiming2.sdc are read (because these three files are associated with
Synthesis); mytiming.sdc and sdfsadf.sdc are not read (because they are not associated with Synthesis).
When the SmartTime Constraint Editor opens for edit, the constraints from all the files except for sdfsadf.sdc
are read and loaded into the Constraint Editor. Any changes you made and saved in the Constraint Editor
are written back to the files.

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

Derived Constraints

Libero SoC is capable of generating SDC timing constraints for design components when the root of the
design has been defined. Click Derive Constraints in the Constraint Manager’s Timing tab to generate SDC
timing constraints for your design’s components.

The generated constraint file is named <root>_derived.sdc and is created by instantiating component SDC
files created by IP configurators (e.g., CCC) and oscillators used in the design.

The <root>_derived.sdc file is associated by default to the Synthesis, Place and Route and Timing
Verification tool. You can change the file association in the Constraint Manager by checking or unchecking
the checkbox under the tool.

To generate SDC timing constraints for IP cores:

1. Configure and generate the IP Core.

2. From the Constraint Manager’s Timing tab, click Derive Constraints (Constraint Manager > Timing >
Derive Constraints).
The Constraint Manager generates the <root>_derived_constraints.sdc file and places it in the Timing
Tab along with other user SDC constraint file.

3. When prompted for a Yes or No on whether or not you want the Constraint Manager to
automatically associate the derived SDC file to Synthesis, Place and Route, and Timing Verification,
click Yes to accept automatic association or No and then check or uncheck the appropriate checkbox
for tool association.
Note: Microsemi recommends the <root>_derived_constraints.sdc be always associated with all three
tools: Synthesis, Place and Route, and Verify Timing. Before running SynplifyPro Synthesis, associate
the <root>_derived_constraints.sdc file with Synthesis and Place and Route. This will ensure that the
design objects (such as nets and cells) in the <root>_derived_constraints.sdc file are preserved during
the synthesis step and the subsequent Place and Route step will not error out because of design
object mismatches between the post-synthesis netlist and the <root>_derived_constraints.sdc file.

Note: Full hierarchical path names are used to identify design objects in the generated SDC file.

Note: The Derive Constraints button is available for HDL-based and SmartDesign-based design flows. It is
not available if the design flow is EDIF/EDN (Project > Project Settings > Design Flow > Enable Synthesis
[not checked].

Constraint Manager — Floor Planner Tab

The Floor Planner tab allows you to manage floorplanning constraints. Floorplanning constraints files (PDC)
have the *.pdc file extension and are placed in the <Project_location>\constraint\fp folder.

Available actions are:

e New — Creates a new floorplanning PDC file and saves it into the <Project_location>\constraint\fp
folder.

e Import — Imports an existing floorplanning PDC file into the Libero SoC project. The floorplanning PDC
file is copied into the <Project_location>\constraint\fp folder.

e Link — Creates a link in the project’s constraint folder to an existing floorplanning PDC file (located and
maintained outside of the Libero SoC project).

e Edit with Chip Planner — Opens the Chip Planner tool to modify the floorplanning PDC file(s)
associated with the Place and Route tool.

43

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/chipplanner_ug.pdf

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

e Check — Checks the legality of the PDC file(s) associated with the Place and Route tool against the
gate level netlist.

When the Chip Planner tool is invoked or the constraint check is performed, all files associated with the
Place and Route tool are passed for processing.

When you save your edits in the Chip Planner tool, the floorplanning PDC files affected by the change are
updated to reflect the change you made in the Chip Planner tool. New floorplanning constraints that you add
in the Chip Planner tool are written to the Target file (if a target file has been set) or written to a new PDC file
(if no file is set as target) and stored in the <project>\constraint\fp folder.

[1/0 Attributes \/ Timing /" Floor Planner \/” Neftiist Atiributes \
[new [tmport][ok | [EdtwithChipPlanner] [check | [Hep | 1| ¢

Place and Route
constraint\fp\my.pdc v

Figure 31 - Constraint Manager — Floor Planner Tab
Right-click the floorplanning PDC files to access the available actions:

e Set/Unset as Target — Sets or clears the selected file as the target to store new constraints created in
the Chip Planner tool. Newly created constraints only go into the target constraint file. Only one file can
be set as target.

e Open in Text Editor — Opens the selected constraint file in the Libero Text Editor.

e Clone - Copies the file to a file with a different name. The original file name and its content remain
intact.

e Rename - Renames the file to a different name.
e Copy File Path - Copies the file path to the clipboard.
e Delete From Project and Disk - Deletes the selected file from the project and from the disk.

e Unlink: Copy file locally — Removes the link and copies the file into the
<Project_location>\constraint\fp folder. The selection is available only for linked constraint files.

File and Tool Association
Each floorplanning constraint file can be associated or disassociated to the Place and Route tool.
Click the checkbox under Place and Route to associate/disassociate the file from the tool.
When a file is associated, Libero passes the file to the tool for processing.

See Also
Chip Planner User Guide

Constraint Manager — Netlist Attributes Tab

The Netlist Attributes tab allows you to manage netlist attribute constraints to optimize your design during
the synthesis and/or compile process. Timing constraints should be entered using SDC files managed in the
Timing tab. Netlist Attribute constraints files are placed in the <Project_location>\constraint folder. Libero
SoC manages two types of netlist attributes:

44

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/chipplanner_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

e FDC constraints are used to optimize the HDL design using Synopsys SynplifyPro synthesis engine
and have the *.fdc extension.

¢ NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC compile engine
and have the *.ndc file extension

Available operations are:

e New — Creates a new FDC or NDC netlist attribute constraints file in the <Project_location>\constraint
folder.

e Import — Imports an existing FDC or NDC netlist attribute constraints file into the Libero SoC project.
The FDC or NDC netlist attribute constraints file is copied into the <Project_location>\constraint folder.

e Link — Creates a link in the project’s constraint folder to an existing existing FDC or NDC netlist
attribute constraints file (located and maintained outside of the Libero SoC project).

e Check — Checks the legality of the FDC and NDC file(s) associated with the Synthesis or Compile
tools.

When the constraint check is performed, all files associated with the Synthesis or Compile tools are passed
for processing.

{110 Attrioutes \/ Timing \/ Fioor Planner |/ Netist Attributes \

Mew vl [Import | ik | [check |+ Help | +| [#
Synthesis

constraint\test.fde o

constraint\my.ndc ¥l

Figure 32 - Constraint Manager — Netlist Attributes Tab
Right-click the FDC or NDC files to access the available actions:
e Open in Text Editor — Opens the selected constraint file in the Libero SoC Text Editor.

e Clone - Copies the file to a file with a different name. The original file name and its content remain
intact.

e Rename - Renames the file to a different name.
e Copy File Path - Copies the file path to the clipboard.
o Delete From Project and Disk — Deletes the file from the project and from the disk.

e Unlink: Copy file locally — Removes the link and copies the file into the <Project_location>\constraint
folder. This menu item is available only for linked constraint files.

File and Tool Association
Each netlist attributes constraint file can be associated with or disassociated from the Synthesis tool.
Click the checkbox under Synthesis (Compile) to associate/disassociate the file from Synthesis (Compile).

When a file is associated, Libero passes the file to Synthesis (Compile) for processing when Synthesis is
run.

45

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

When Synthesis is ON (Project > Project Settings > Design Flow > Enable synthesis [checked]) for a project,
the Design Flow Synthesis action runs both the synthesis engine and the post-synthesis compile engine.

When Synthesis is OFF (Project > Project Settings > Design Flow > Enable synthesis [not checked]) for a
project, the Design Flow Synthesis action is replaced by the Compile action and runs the compile engine on
the gate-level netlist (EDIF or Verilog) available in the project.

46

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Implement Design

Synthesize
Double-click Synthesize to run synthesis on your design with the default settings specified in the synthesis
tool.

If you want to run the synthesis tool interactively, right-click Synthesize and choose Open Interactively. If
you open your tool interactively, you must complete synthesis from within the synthesis tool.

The default synthesis tool included with Libero SoC is Synplify Pro ME. If you want to use a different
synthesis tool, you can change the settings in your Tool Profiles.

You can organize input synthesis source files via the Organize Source Files dialog box.

Synthesize Options

Some families enable you to set or change synthesis configuration options for your synthesis tool. To do so,
in the Design Flow window, expand Implement Design, right-click Synthesize and choose Configure
Options. This opens the Synthesize Options dialog box.

5] Synthesize Options "=
Global Mets
Minimurm number of clock pins: z
Minimurm number of asynchronous pins: 00
Minimurm Fanout of non-clock nets to be kept on globals: 5000
Mumber of global resources: 24

Maximurm number of global nets that could be demoted ko row-globals: 16
Mimimum Famout of global nets that could be demoted to row-globals: 1000
Cpkimizations

] Enable retiming

RAM optimized Far: @ High speed | Low power
Map seq-shift register components to: R.eqisters @ RAMA4x1Z

Additional options For SynplifyPro synthesis

Script File:

Additional options:

Help I [0]4 | | Cancel

Figure 33 - Synthesize Options Dialog Box

47

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

HDL Synthesis Language Settings

HDL Synthesis language options are no longer specified in this dialog box. Please refer to Project Settings:
Design Flow Options.

Global Nets (Promotions and Demotions)

Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis
tool promotes the pins to globals:

e Minimum number of clock pins — Specifies the threshold value for Clock pin promotion. The default
value is 2.

e Minimum number of asynchronous pins — Specifies the threshold value for Asynchronous pin
promotion. The default is 800 for PolarFire.

¢ Minimum fanout of non-clock nets to be kept on globals — Specifies the threshold value for data
pin promotion to global resources. It is the minimum fanout of non-clock (data) nets to be kept on
globals (no demotion). The default is 5000 (must be between 1000 and 200000).

e Number of global resources — This can be used to control number of Global resources you want to
use in your design. By default this displays the number of available global resources for the die you
have selected for the project and varies with different die sizes. For PolarFire, the default is 24 for all
dies.

e Maximum number of global nets that could be demoted to row-globals — Specifies the maximum
number of global nets that could be demoted to row-globals. The default is 16 (must be between 0 to
50).

e Minimum fanout of global nets that could be demoted to row-globals — Specifies the minimum
fanout of global nets that could be demoted to row-global. It is undesirable to have high fanout nets
demoted using row globals because it may result in high skew. The default is 300. (Must be between
25 to 5000). If you run out of global routing resources for your design, reduce this number (to allow
more globals to be demoted to Row Globals) or select a bigger die for your design.

Note: Hardwired connections to global resources, such as CCC hardwired connections to GB , 10 Hardwired
connections to GB, and so on, cannot be controlled by these options.

Optimizations

Enable retiming — Check this box to enable Retiming during synthesis. Retiming is the process of
automatically moving registers (register balancing) across combinational gates to improve timing, while
ensuring identical logic behavior. The default is no retiming during synthesis.

RAM optimized for:
Use this option to guide the Synthesis tool to optimize RAMs to achieve your design goal.

e High speed — RAM Optimization is geared towards Speed. The resulting synthesized design achieves
better performance (higher speed) at the expense of more FPGA resources.

e Low power — RAM Optimization is geared towards Low Power. RAMs are inferred and configured to
ensure the lowest power consumption.

Map seg-shift register components to:
Use this option to select the mapping of sequential logic:
¢ Registers — When selected, sequential shift logic in the RTL is mapped to registers.

¢ RAMG64x12 — When selected, sequential shift logic in the RTL is mapped to a 64x12 RAM block. This
is the default setting.

48

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Additional options for Synplify Pro synthesis

Script File

Click the Browse L"** | button to navigate to a Synplify Tcl file that contains the Synplify Pro-specific options.
Libero passes the options in the Tcl file to Synplify Pro for processing.

Additional Options

Use this field to enter additional Synplify options. Put each additional option on a separate line.

Note: Libero passes these additional options “as-is” to Synplify Pro for processing; no syntax checks are
performed. All of these options are set on the Active Implementation only.

The list of recommended Synthesis Tcl options below can be added or modified in the Tcl Script File or
Additional Options Editor.

Note: The options from the Additional Options Editor will always have priority over the Tcl Script file options
if they are same.

set_option -use_fsm_explorer 0/1

set_option -frequency 200.000000

set_option -write_verilog 0/1

set_option -write_vhdl 0/1

set_option -resolve_multiple_driver 1/0

set_option -rw_check_on_ram 0/1

set_option -auto_constrain_io 0/1

set_option -run_prop_extract 1/0

set_option -default_enum_encoding default/onehot/sequential/gray

set_option -maxfan 30000

set_option -report_path 5000

set_option -update_models_cp 0/1

set_option -preserve_registers 1/0

set_option -continue_on_error 1/0

set_option -symbolic_fsm_compiler 1/0

set_option -compiler_compatible 0/1

set_option -resource_sharing 1/0

set_option -write_apr_constraint 1/0

set_option -dup 170

set_option -enable64bit 1/0

set_option -fanout_limit 50

set_option -frequency auto

set_option -hdl_define SLE_INIT=2

set_option -hdl_param -set "width=8"

set_option -looplimit 3000

set_option -fanout_guide 50

set_option -maxfan_hard 1/0

set_option -num_critical_paths 10

set_option -safe_case 0/1

Any additional options can be entered through the Script File or Additional Options Editor. All of these
options can be added and modified outside of Libero through interactive SynplifyPro.

Refer to the Synplify Pro Reference Manual for detailed information about the options and supported
families.

The following options are already set by Libero. Do not include them in the additional options field or Script
File:

add_file <*>

impl <*>

project_folder <*>

49

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

add_folder <*>

constraint_file <*>

project <*>

project_file <*>

open_file <*>

set_option —part

set_option -package

set_option -speed_grade
set_option -top_module

set_option -technology

set_option -opcond

set_option -vlog_std

set_option -vhdl12008

set_option -disable_io_insertion
set_option -async_globalthreshold
set_option -clock_globalthreshold
set_option -globalthreshold
set_option -low_power_ram_decomp
set_option -retiming

Synplify Pro ME

Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.

If you wish to use custom settings you must run synthesis interactively.

To run synthesis using Synplify Pro ME with custom settings:

1.

w

Note:

If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design
Flow window and choose Open Interactively. Synplify starts and loads the appropriate design files,
with a few pre-set default values.

From Synplify’s Project menu, choose Implementation Options.
Set your specifications and click OK.
Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools

and is not intended for synthesis. Embed the defparam statement in between translate_on and

translate_off synthesis directives as follows :
/* synthesis translate_off */
defparam MO.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */

// rest of the code for synthesis

Click the RUN button. Synplify compiles and synthesizes the design into an EDIF, *.edn, file. Your
EDIF netlist is then automatically translated by the software into an HDL netlist. The resulting *edn and
*.vhd files are visible in the Files list, under Synthesis Files.

Should any errors appear after you click the Run button, you can edit the file using the Synplify editor.
Double-click the file name in the Synplify window showing the loaded design files. Any changes you
make are saved to your original design file in your project.

From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any
settings that you have made while in Synplify. Click Yes.

See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of attributes
related to Microsemi devices.

Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you put the

net_name only, it does not work.

50

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Identify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.

Identify features:
¢ Instrument and debug your FPGA directly from RTL source code .
¢ Internal design visibility at full speed.

e Incremental iteration - Design changes are made to the device from the Identify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

e Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.
To use the Identify Instrumentor and Debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.

2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a
Programming File) without starting Identify.

Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
In Synplify, click Options > Configure Identify Launch to setup Identify.
In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

In the Implementations Options dialog, make sure the Implementation Results > Results Directory
points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file.

7. From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

8. InLibero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

o g~ w

9. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Compile Netlist

Options

The Compile Netlist step appears in the Design Flow window only when the design source is EDIF (EDIF
design flow). To enable the EDIF design flow, turn off the Enable Synthesis option in the Project > Project
Settings > Design Flow page.

Note: When the design source is HDL/SmartDesign, this Compile Netlist step is not available in the Design
Flow window. Instead, it is automatically run as part of the Synthesis step.

The Compile Netlist Options sets the threshold value for global resource promotion and demotion when
Place and Route is executed.

51

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

71 Compile Netlist Options -

Global Promaotion

Mumber of global resources: 24

Maximum number of global nets that could be demoted to row-globals: | 16|

Minimum fanout of global nets that could be demoted to row-globals: 1000

Minimum fanout of non-dodk nets to be kept on globals: 5000

Help Ok] I Cancel

Figure 34 - Compile Netlist Options Dialog Box

Number of global resources - The number of available global resources for the die is reported in this field.
The number varies with the die size you select for the Libero SoC project.

The following options allow you to set the maximum/minimum values for promotion and demotion of global
routing resources.

Maximum Number of global nets that could be demoted to row-globals — Specifies the maximum
number of global nets that can be demoted to row-globals. The default is 16.

Minimum fanout of global nets that could be demoted to row-globals — Specifies the minimum fanout of
global nets that can be demoted to row-global. The default is 1000. If you run out of global routing resources
for your design, reduce this number (to allow more globals to be demoted) or select a larger die for your
design.

Minimum fanout of non-clock nets to be kept on globals — Specifies the minimum fanout of non-clock
(data) nets to be kept on globals (no demotion). The default is 5000 (valid range is 1000 to 200000). If you
run out of global routing resources for your design, increase this number or select a larger die for your
design.

Resource Usage

After layout, you can check the resource usage of your design.

From the Design menu, choose Reports (Design > Reports). Click <design_name>_layout_log.log to open
the log file.

The log file contains a Resource Usage report, which lists the type and percentage of resource used for
each resource type relative to the total resources available for the chip.

Type Used Total Percentage
4LUT 400 86184 0.46
DFF 300 86184 0.34
I/O Register 0 795 0.00
Logic Element 473 86184 0.55

52

PolarFire Design Flow User Guide

4L UTs are 4-input Look-up Tables that can implement any combinational logic functions with up to four

inputs.

The Logic Element is a logic unit in the fabric. It may contain a 4LUT, a DFF, or both. The number of Logic

& Microsemi

Power Matters.”

Elements in the report includes all Logic Elements, regardless of whether they contain 4LUT only, DFF only,

or both.

Overlapping of Resource Reporting

The number of 4LUTs in the report are the total number used for your design, regardless of whether or not

they are combined with the DFFs. Similarly, the number of DFFs in the report are the total number used for
your design, regardless of whether or not they are combined with 4LUT's.

In the report above, there is a total of 473 Logic Elements (LEs) used for the design.

300 of the 473 LEs have DFFs inside, which means 173 (473-300) of them have no DFFs in them. These

173 LEs are using only the 4LUTs portion of the LE.

400 of the 473 LEs have 4LUTs inside, which means 73 (473-400) of them have no 4LUTS in them. These
73 LEs are using only the DFF portion of the LE.

LEs using DFF Only = 473-400 =

73

LEs using 4LUTS only = 473-300=

173

246 (Total of LEs using 4LUTS ONLY or DFF ONLY)

Report’s Overlapped resource =

227 (LEs using both 4LUTS and DFF)

Total number of LEs used =

473

LE Using
DFF
Only
(73)

LE Using
4LUTS Only
(173)

The area where the two circles overlap represents the overlapped resources in the Resource Usage report.

53

PolarFire Design Flow User Guide

Constraint Flow in Implementation

Design State Invalidation

The Libero SoC Design Flow window displays status icons to indicate the status of the design state. For any

& Microsemi

Power Matters.”

status other than a successful run, the status icon is identified with a tooltip to give you additional

information.
Status Tooltip Description Possible Causes/Remedy
Icon
N/A Tool has not NEW state Tool has not run or it has been cleaned.
run yet.
Ivf Tool runs Tool runs with no errors. | N/A

successfully.

PASS state.

I!f Varies with the | Tool runs but with Varies with the tool (e.g., for the Compile Netlist
- tool. Warnings. step, not all I/Os have been assigned and
locked).
|9 Tool Fails. Tool fails to run. Invalid command options or switches, invalid

design objects, invalid design constraints.

Design State is
I Out of Date.

Tool state changes from
PASS to OUT OF
DATE.

Since the last successful run, design source
design files, constraint files or constraint file/tool
association, constraint files order, tool options,
and/or project settings have changed.

x Timing

Constraints
have not been
met.

Timing Verification runs
successfully but the
design fails to meet
timing requirements.

Design fails Timing Analysis. Design has either
set-up or hold time violations or both. See
PolarFire FPGA Timing Constraints User Guide
on how to resolve the timing violations.

Constraints and Design Invalidation

A tool in the Design Flow changes from a PASS state (green check mark) to an OUT OF DATE state when a

source file or setting affecting the outcome of that tool has changed.

The out-of-date design state is identified by the

Sources and/or settings are defined as:

icon in the Design Flow window.

e HDL sources (for Synthesis), gate level netlist (for Compile), and Smart Design components

e Design Blocks (*.cxz files) — low-level design units which may have completed Place and Route and
re-used as components in a higher-level design

e Constraint files associated with a tool
e Upstream tools in the Design Flow:

If the tool state of a Design Flow tool changes from PASS to OUT OF DATE, the tool states of all
the tools below it in the Design Flow, if already run and are in PASS state, also change to OUT
OF DATE with appropriate tooltips. For example, if the Synthesis tool state changes from PASS
to OUT OF DATE, the tool states of Place and Route tool as well as all the tools below it in the
Design Flow change to OUT OF DATE.

If a Design Flow tool is CLEANED, the tool states of all the tools below it in the Design Flow, if

already run, change from PASS to OUT OF DATE.

If a Design Flow tool is rerun, the tool states of all the tools below it in the Design Flow, if already
run, are CLEANED.

54

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_timing_constr_flow_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_timing_constr_flow_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

e Tool Options

¢ If the configuration options of a Design Flow tool (right-click the tool and choose Configure
Options) are modified, the tool states of that tool and all the other tools below it in the Design
Flow, if already run, are changed to OUT OF DATE with appropriate tooltips.

e Project Settings:
e Device selection
e Device settings
e Design Flow
e Analysis operating conditions

Setting Changed Note Design Flow Tools Affected New State of the
Affected Design
Flow Tools
Die Part#is | All CLEANED/NEW
changed
Package Part#is | All CLEANED/NEW
changed
Speed Part#is | All CLEANED/NEW
changed
Core Voltage Part#is | All CLEANED/NEW
changed
Range Part#is | All CLEANED/NEW
changed
Default /0 Technology Synthesize, and all tools below it OUT OF DATE
Reserve Pins for Place and Route, and all tools below it | OUT OF DATE
Probes
PLL Supply Voltage Verify Power, Generate FPGA Array OUT OF DATE
(V) Data and all other “Program and

Debug Design” tools below it

Power On Reset Delay Generate FPGA Array Data and all OUT OF DATE
other “Program and Debug Design”
tools below it
System controller Generate FPGA Array Data and all OUT OF DATE
suspended mode other “Program and Debug Design”
tools below it
Preferred Language None N/A
Enable synthesis All OUT OF DATE
Synthesis gate level Synthesize CLEANED/NEW

netlist format

Reports(Maximum None N/A
number of high fanout
nets to be displayed)

55

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Setting Changed Note Design Flow Tools Affected New State of the
Affected Design
Flow Tools
Abort flow if errors are None N/A
found in PDC
Abort flow if errors are None N/A
found in SDC
Temperature range(C) Verify Timing, Post Layout Simulate, OUT OF DATE
and Verify Power
Core voltage range(V) Verify Timing, Post Layout Simulate, OUT OF DATE
and Verify Power
Default 1/0 voltage Verify Timing, Post Layout Simulate, OUT OF DATE
range and Verify Power

¢ Note: Cleaning a tool means the output files from that tool are deleted including log and report files, and
the tool’s state is changed to NEW.

Check Constraints
When a constraint file is checked, the Constraint Checker does the following:

Checks the syntax

Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in
the netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g., constraints on a design object which
does not exist in the netlist) are flagged as errors and reported in the *_sdc.log file

Design State and Constraints Check

Constraints can be checked only when the design is in the right state.

Constraint Type | Check for Tools | Required Design | Netlist Used for Check Result
State Before Design Objects
Checking Checks
I/O Constraints Place and Route | Post-Synthesis ADL Netlist Reported in Libero Log
Window
Floorplanning Place and Route | Post-Synthesis ADL Netlist par_sdc.log

Constraints

Timing Synthesis Pre-Synthesis RTL Netlist synthesis_sdc.log
Constraints
Place and Route | Post-Synthesis ADL Netlist par_sdc.log
Timing Verification | Post-Synthesis ADL Netlist vt_sdc.log
Netlist Attributes | FDC Check Pre-Synthesis RTL Netlist Libero Message Window
Netlist Attributes | NDC Check Pre-Synthesis RTL Netlist Reported in Libero Log
Window

56

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

A pop-up message appears when the check is made and the design flow has not reached the right state.

| Information lé]

[0] Please run 'Synthesize’ before executing Chedk Cperation

& 5

Figure 35 - Pop-Up message: Design State insufficient for Constraints Check operation

Edit Constraints

Click the Edit with I/O Editor/Chip Planner/Constraint Editor button to edit existing and add new
constraints. Except for the Netlist Attribute constraints (*.fdc and *.ndc) file, which cannot be edited by an
interactive tool, all other constraint types can be edited with an Interactive Tool. The *.fdc and *.ndc files can
be edited using the Libero SoC Text Editor.

The I/O Editor is the interactive tool to edit I/O Attributes, Chip Planner is the interactive tool to edit
Floorplanning Constraints, and the Constraint Editor is the interactive tool to edit Timing Constraints.

For Timing Constraints that can be associated to Synthesis, Place and Route, and Timing Verification, you
need to specify which group of constraint files you want the Constraint Editor to read and edit:

e Edit Synthesis Constraints - reads associated Synthesis constraints to edit.
e Edit Place and Route Constraints - reads only the Place and Route associated constraints.
e Edit Timing Verification Constraints - reads only the Timing Verification associated constraints.

For the three SDC constraints files (a.sdc, b.sdc, and c.sdc, each with Tool Association as shown in the
table below) when the Constraint Editor opens, it reads the SDC file based on your selection and the
constraint file/tool association.

Synthesis Place and Route Timing Verification
a.sdc X X
b.sdc X X
c.sdc [target] X X X

e Edit Synthesis Constraints reads only the b.sdc and c.sdc when Constraint Editor opens.
e Edit Place and Route Constraints reads a.sdc, b.sdc and c.sdc when Constraint Editor opens.
e Edit Timing Verification Constraints reads a.sdc and c.sdc when Constraint Editor opens.

Constraints in the SDC constraint file that are read by the Constraint Editor and subsequently modified by
you will be written back to the SDC file when you save the edits and close the Constraint Editor.

When you add a new SDC constraint in the Constraint Editor, the new constraint is added to the c.sdc file,
because it is set as target. If no file is set as target, Libero SoC creates a new SDC file to store the new
constraint.

57

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Constraint Type and Interactive Tool

Constraint Type Interactive Tool For Design Tool the Required Design State
Editing Constraints File is Before Interactive Tool
Associated Opens for Edit
I/O Constraints I/O Editor Place and Route Tool | Post-Synthesis
Floorplanning Chip Planner Place and Route Tool | Post-Synthesis

Constraints

Timing Constraints | SmartTime Constraints Synthesis Tool Pre-Synthesis

Editor Place and Route Post-Synthesis
Timing Verification Post-Synthesis

Netlist Attributes Interactive Tool Not Synthesis Pre-Synthesis

Synplify Netlist Available Open the Text

Constraint (*.fdc) Editor to edit.

Netlist Attributes Interactive Tool Not Synthesis Pre-Synthesis

Compile Netlist Available Open the Text

Constraint (*.ndc) Editor to edit.

Note: If the design is not in the proper state when Edit with <Interactive tool> is invoked, a pop-up
message appears.

s]

ﬁ Information @

-o'l Please run 'Synthesize’ before executing Edit Operation
Note: When an interactive tool is opened for editing, the Constraint Manager is disabled. Close the
Interactive Tool to return to the Constraint Manager.

58

PolarFire Design Flow User Guide

Place and Route

Double-click Place and Route to run Place and Route on your design with the default settings.

Place and Route Options

& Microsemi

Power Matters.”

To change your Place and Route settings from the Design Flow window, expand Implement Design, right-

click Place and Route and choose Configure Options. This opens the Layout Options dialog box.

v Timing-driven
I Power-driven
[Driver Replication
[High Effort Layout

I+ Repair Minimum Delay Violations

[~ Incremental Layout

[Use Multiple Passes

ey
Configure...

Help Ok | Cancel

Figure 36 - Layout Options Dialog Box

[v Timing-driven
[~ Power-driven
[Driver Replication
[~ High Effort Layout

[v Repair Minimum Delay Viclations

™ Incremental Layout

[Use Multiple Passes

Con

Block Creation

Number of row-global resources | 18

Help OK | Cancel

Figure 37 - Layout Options Dialog Box - with Block Flow enabled

59

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”
Timing-Driven

Timing-Driven Place and Route is selected by default. The primary goal of timing-driven Place and Route is
to meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route
typically delivers better performance than Standard Place and Route.

If you do not select Timing-driven Place and Route, timing constraints are not considered by the software,
although a delay report based on delay constraints entered in SmartTime can still be generated for the
design.

Power-Driven

Select this option to run Power-Driven layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.

Driver Replication

Enables an algorithm to replicate critical net drivers to reduce timing violations. The algorithm prints the list
of registers along with the duplicate names. Each set of names should be used in place of the original
register in any specified timing constraint.

High Effort Layout

Enable this option to improve the likelihood of achieving layout success; layout runtime will increase if you
select this option. Timing performance may suffer as well. Users are urged to consider other methods for
achieving layout success before utilizing this option.

Repair Minimum Delay Violations

Enable this option to instruct the Router engine to repair Minimum Delay violations for Timing-Driven Place
and Route mode (Timing-Driven Place and Route option enabled). The Repair Minimum Delay Violations
option, when enabled, performs an additional route that attempts to repair paths that have minimum delay
and hold time violations. This is done by increasing the length of routing paths and inserting routing buffers
to add delay to the top 100 violating paths.

When this option is enabled, Libero adjusts the programmable delays through 1/0s to meet hold time
requirements from input to registers. For register-to-register paths, Libero adds buffers.

Libero iteratively analyzes paths with negative minimum delay slacks (hold time violations) and chooses
suitable connections and locations to insert buffers. Not all paths can be repaired using this technique, but
many common cases will benefit.

Even when this option is enabled, Libero will not repair a connection or path which:
e Is a hardwired, preserved, or global net
e Has a sink pin which is a clock pin
e Isviolating a maximum delay constraint (that is, the maximum delay slack for the pin is negative)
e May cause the maximum delay requirement for the sink pin to be violated (setup violations)

Typically, this option is enabled in conjunction with the Incremental Layout option when a design’s maximum
delay requirements have been satisfied.

Every effort is made to avoid creating max-delay timing violations on worst case paths.

Min Delay Repair produces a report in the implementation directory which lists all of the paths that were
considered.

If your design continues to have internal hold time violations, you may wish to rerun repair Minimum Delay
Violations (in conjunction with Incremental Layout). This will analyze additional paths if you originally had
more than 100 violating paths.

60

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Incremental Layout

Choose Incremental Layout to use previous placement data as the initial placement for the next run. If a high
number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-driven mode, or
select a bigger device and rerun Place and Route.

You can preserve portions of your design by employing Compile Points, which are RTL partitions of the
design that you define before synthesis. The synthesis tool treats each Compile Point as a block which
enables you to preserve its structure and timing characteristics. By executing Layout in Incremental Mode,
locations of previously-placed cells and the routing of previously-routed nets is preserved. Compile Points
make it easy for you to mark portions of a design as black boxes, and let you divide the design effort
between designers or teams. See the Synopsys FPGA Synthesis Pro ME User Guide for more information.

Use Multiple Pass

Check Multiple Pass to run multiple pass of Place and Route to get the best Layout result. Click Configure
to specify the criteria you want to use to determine the best layout result. For details see Multiple Pass
Layout Configuration.

Block Creation — Number of row-global resources

This option is available only when the Block Creation option is turned on (Project > Project Settings >
Design Flow > Enable Block Creation). The value entered here restricts the number of row-global
resources available in every half-row of the device. During Place and Route of the block, the tool will not
exceed this capacity on any half-row. The default value is the maximum number of row-globals. If you enter
a value lower than the maximum capacity (the default), the layout of the block will be able to integrate with
the rest of the design if they consume the remaining row-global capacity.

See Also
Multiple Pass Layout Configuration.

extended run_lib

Multiple Pass Layout Configuration

Multiple Pass Layout attempts to improve layout quality by selecting from a greater number of Layout
results. This is done by running individual place and route multiple times with varying placement seeds and
measuring the best results with specified criteria.

e Before running Multiple Pass Layout, save your design.
e Multiple Pass Layout is supported by all families.

e Multiple Pass Layout saves your design file with the pass that has the best layout results. If you want
to preserve your existing design state, you should save your design file with a different name before
proceeding. To do this, from the File menu, choose Save As.

e Four types of reports (timing, maximum delay timing violations, minimum delay timing violations, and
power) for each pass are written to the working directory to assist you in later analysis:

e <root_module_name>_timing_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_timing_violations_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_timing_violations_min_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_power_r<runNum>_s<seedIndex>.rpt
e <root_module_name>_iteration_summary.rpt provides additional details about the saved files.
To configure your multiple pass options:
1. When running Layout, select Use Multiple Passes in the Layout Options dialog box.
2. Click Configure. The Multi-Pass Configuration dialog box appears.

61

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

5| Multi-Pass Configuration l ? ﬁ]

Mumber of passes: 5

|
1 25

Start at seed index (1 - 101): 11 B

Measurement:
) Slowest dodk
") Spedific dock CLK_ibuffUo/U_IOINFF:Y
| Timing violations

Maximum delay (@ Minimum delay

@ Total power

Come) o (o]

Figure 38 - Multi-Pass Configuration Dialog Box
3. Set the options and click OK.

Number of passes: Set the number of passes (iterations) using the slider. 1 is the minimum and 25 is the
maximum. The default is 5.

Start at seed index: Set the specific index into the array of random seeds which is to be the starting point
for the passes. If not specified, the default behavior is to continue from the last seed index that was used.

Measurement: Select the measurement criteria you want to compare layout results against.

e Slowest clock: Select to use the slowest clock frequency in the design in a given pass as the
performance reference for the layout pass.

e Specific clock: Select to use a specific clock frequency as the performance reference for all layout
passes.

Timing violations: This is the default. Select Timing Violations to use the pass that best meets the slack or
timing-violations constraints.

Note: You must enter your own timing constraints through SmartTime or SDC.

¢ Maximum delay: Select to examine timing violations (slacks) obtained from maximum delay analysis.
This is the default.

e Minimum delay: Select to examine timing violations (slacks) obtained from minimum delay analysis.
e Select by: Worst Slack or Total Negative Slack to specify the slack criteria.

e When Worst Slack (default) is selected, the largest amount of negative slack (or least amount of
positive slack if all constraints are met) for each pass is identified, and the largest value of all
passes determines the best pass.

e When Total Negative Slack is selected, the sum of negative slacks from the first 100 paths in the
Timing Violations report for each pass is identified, and the largest value of all the passes
determines the best pass. If no negative slacks exist for a pass, the worst slack is used to
evaluate that pass.

e Stop on first pass without violations: Select to stop performing remaining passes if all timing
constraints have been met (when there are no negative slacks reported in the timing violations
report).

e Total power: Select to determine the best pass to be the one that has the lowest total power (static +
dynamic) of all layout passes.

62

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Iteration Summary Report
The file <root_module>_iteration_summary.rpt records a summary of how the multiple pass run was invoked
either through the GUI or extended_run_lib Tcl script, with arguments for repeating each run. Each new run
appears with its own header in the Iteration Summary Report with fields RUN_NUMBER and INVOKED AS,
followed by a table containing Seed Index, corresponding Seed value, Comparison data, Report Analyzed,
and Saved Design information.

el st parost 8K | feprs @% | Swbwe g% | mete §% | moie @% | mesw g% s

=

Figure 39 - Iteration Summary Report

See Also
Place and Route
extended run_lib

Verify Post Layout Implementation
Verify Timing
Verify Timing Configuration

Use this dialog box to configure the ‘Verify Timing’ tool to generate a timing constraint coverage report and
detailed static timing analysis and violation reports based on different combinations of process speed,
operating voltage, and temperature.

For the timing and timing violation reports you can select:

¢ Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.
e Min Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.
e Max Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.
e Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.
e Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.
e Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.
The following figures show examples of the Verify Timing Configuration dialog box for various operating
conditions and report selections.

63

PolarFire Design Flow User Guide

Types of Timing Reports

EI Verify Timing Configuration

Timing Reports

Slow process, Low voltage and High temperature
Max Delay Analysis Timing Report

[] Min Delay Analysis Timing Report

Max Delay Analysis Timing Violations Repaort

[] Min Delay Analysis Timing Violations Repart

Fast process, High voltage and Low temperature
[] Max Delay Analysis Timing Report

Min Delay Analysis Timing Repaort

[] Max Delay Analysis Timing Violations Report
Min Delay Analysis Timing Violations Report

Slow process, Law voltage and Low temperature
[] Max Delay Analysis Timing Report

[] Min Delay Analysiz Timing Report

[] Max Delay Analysis Timing Viclations Repart
[] Min Delay Analysis Timing Violations Report

Constraints Coverage Report

Generate constraints coverage report

& Microsemi

ox

] [Cancel

Figure 40 - Verify Timing Configuration Settings

Power Matters.”

From the Design Flow window > Verify Timing, you can generate the following types of reports:

Timing reports — These reports display timing information organized by clock domain. Four types of timing
reports are available. You can configure which reports to generate using the ‘Verify Timing’ configuration
dialog box (Design Flow > Verify Timing > Configure Options). The following reports can be generated:

e Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.

e Min Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

e Max Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature
operating conditions.

e Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature
operating conditions.

e Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

64

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and Low Temperature
operating conditions.

Timing violations reports — These reports display timing information organized by clock domain. Four
types of timing violations reports are available. You can configure which reports to generate using the ‘Verify
Timing’ configuration dialog (Design Flow > Verify Timing > Configure Options). The following reports
can be generated:

Max Delay Analysis Timing Violation report based on Slow process, Low Voltage, and High
Temperature operating conditions.

Min Delay Analysis Timing Violation report eport based on Fast process, High Voltage, and Low
Temperature operating conditions.

Max Delay Analysis Timing Violation report based on Fast process, High Voltage, and Low
Temperature operating conditions.

Min Delay Analysis Timing Violation report based on Slow process, Low Voltage, and High
Temperature operating conditions.

Max Delay Analysis Timing Violation report based on Slow process, Low Voltage, and Low
Temperature operating conditions.

Min Delay Analysis Timing Violation report based on Slow process, Low Voltage, and Low
Temperature operating conditions.

Constraints coverage report — This report displays the overall coverage of the timing constraints set on the
current design.

<root>_timing_constraints_coverage.xml (generated by default)
4 \erify Timing

pf_pcie_to_ddr3_top_max_timing_slow_bv_htaml

T pf_pcie_to_ddr3_top_min_timing_slow_kv_ht.xml

V pf_pcie_to_ddr3_top_max_timing_violations_slow_lv_ht.xml
? pf_pcie_to_ddr3_top_min_timing_violations_slow_v_ht.xml
? pf_pcie_to_ddr3_top_max_timing_fast_hv_lt.xm|
pf_pcie_to_ddr3_top_min_timing_fast_hwv_ltxml

T pf_pcie_to_ddr3_top_max_timing_violations_fast_hv_lt.xml
v pf_pcie_to_ddr3_top_min_timing_vicolations_fast_hv_ltxm|
7 pf_pcie_to_ddr3_top_max_timing_slow_iv_ltxml

? pf_pcie_to_ddr3_top_min_timing_slow_h_[txml

V pf_pcie_to_ddr3_top_max_timing_violations_slow_v_{t.xml
@' pf_pcie_to_ddr3_top_min_timing_violations_slow_lv_lt.xml
pf_pcie_to_ddr3_top_timing_constraints_coverage.xml
pf_pcie_to_ddr3_top_timing_combinational_loops.xml

Report Listing Icon Legend
Icon Definition
v Timing requirement met for this report
x Timing requirement not met (violations) for this
report
? Timing report available for generation but has not
been selected/configured for generation

Figure 41 - Reports Example

65

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

SmartTime
SmartTime is the Libero SoC gate-level static timing analysis tool. With SmartTime, you can perform
complete timing analysis of your design to ensure that you meet all timing constraints and that your design
operates at the desired speed with the right amount of margin across all operating conditions.
See the Timing Constraints Editor for help with creating and editing timing constraints.

Static Timing Analysis (STA)
Static timing analysis (STA) offers an efficient technique for identifying timing violations in your design and
ensuring that it meets all your timing requirements. You can communicate timing requirements and timing

exceptions to the system by setting timing constraints. A static timing analysis tool will then check and report
setup and hold violations as well as violations on specific path requirements.

STA is particularly well suited for traditional synchronous designs. The main advantage of STA is that unlike
dynamic simulation, it does not require input vectors. It covers all possible paths in the design and does all
the above with relatively low run-time requirements.

The major disadvantage of STA is that the STA tools do not automatically detect false paths in their
algorithms as it reports all possible paths, including false paths, in the design. False paths are timing paths
in the design that do not propagate a signal. To get a true and useful timing analysis, you need to identify
those false paths, if any, as false path constraints to the STA tool and exclude them from timing
considerations.

Timing Constraints

SmartTime supports a range of timing constraints to provide useful analysis and efficient timing-driven
layout.

Timing Analysis
SmartTime provides a selection of analysis types that enable you to:
¢ Find the minimum clock period/highest frequency that does not result in a timing violations
¢ Identify paths with timing violations
e Analyze delays of paths that have no timing constraints
e Perform inter-clock domain timing verification
e Perform maximum and minimum delay analysis for setup and hold checks

To improve the accuracy of the results, SmartTime evaluates clock skew during timing analysis by
individually computing clock insertion delays for each register.

SmartTime checks the timing requirements for violations while evaluating timing exceptions (such as
multicycle or false paths).

SmartTime and Place and Route

Timing constraints impact analysis and place and route the same way. As a result, adding and editing your
timing constraints in SmartTime is the best way to achieve optimum performance.

SmartTime and Timing Reports
From SmartTime > Tools > Reports, the following report files can be generated:
e Timing Report (for both Max and Min Delay Analysis)
e Timing Violations Report (for both Max and Min Delay Analysis)
e Bottleneck Report
e Constraints Coverage Report
e Combinational Loop Report
SmartTime and Cross-Probing into Chip Planner

From SmartTime, you can select a design object and cross-probe the same design object in Chip Planner.
Design objects that can be cross-probed from SmartTime to Chip Planner include:

e Ports
e Macros
e Timing Paths

66

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_ce_ug.pdf

PolarFire Design Flow User Guide c Mmsem’.

Power Matters.”

Refer to the SmartTime User’s Guide for details (Libero SoC > Help > Reference Manual > SmartTime
User’s Guide).

SmartTime and Cross-Probing into Constraint Editor

From SmartTime, you can cross-probe into the Constraint Editor. Select a Timing Path in SmartTime’s
Analysis View and add a Timing Exception Constraint (False Path, Multicycle Path, Max Delay, Min Delay) .
The Constraint Editor reflects the newly added timing exception constraint.

Refer to the SmartTime Static Timing Analyzer User Guide for details.

Verify Power
Right-click on the Verify Power command in the Design Flow window to see the following menu of options:

Tool
G- b Create Design
G- ¢ Constraints
- » Implement Design
B Netlist Viewer
v -G Synthesize
5 Place and Route
- b Verify Post Layout Implementation
o (}_1 Verify Timing
ol Open SmartTime

}- » Program an Run
i - ¢ Configure P Clean and Run All (roduction
& b Handoff De :
Open Interactivel
& » Handoff De P Ve
Clean
Help

Figure 42 - Verify Power right-click menu
Verify Power sub-commands

Run - Runs the default power analysis and produces a power report. This is also the behavior of a double-
click to Verify Power.

Clean and Run All - Identical to the sequence of commands "Clean" (see below) and "Run"
Open interactively - Brings up the SmartPower for Libero SoC tool (see below)
Clean - Clears the history of any previous default power analysis, including deletion of any reports. The flow

task completion icon will also be cleared.

Configure Options ... - This sub-command is only available if there are options to configure, in which case
a dialog box will pop-up presenting the user with technology-specific choices.

View Report - This sub-command is only available and visible if a report is available. When View Report is

invoked, the Report tab will be added to the Libero SoC GUI window, and the Power Report will be selected
and made visible.

67

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smarttime_sta_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

SmartPower

Power Matters.”

SmartPower is the Microsemi SoC state-of-the-art power analysis tool. SmartPower enables you to globally
and in-depth visualize power consumption and potential power consumption problems within your design, so
you can make adjustments — when possible — to reduce power.

SmartPower provides a detailed and accurate way to analyze designs for Microsemi SoC FPGAs: from top-
level summaries to deep down specific functions within the design, such as gates, nets, 10s, memories,
clock domains, blocks, and power supply rails.

You can analyze the hierarchy of block instances and specific instances within a hierarchy, and each can be
broken down in different ways to show the respective power consumption of the component pieces.

SmartPower also analyses power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep, or
Static, depending on the specific FPGA family used. You can also create custom modes that may have been
created in the design. Custom modes can also be used for testing "what if" potential operating modes.

SmartPower has a very unique feature that enables you to create test scenario profiles. A profile enables
you to create sets of operational modes, so you can understand the average power consumed by this
combination of functional modes. An example may be a combination of Active, Sleep, and Flash*Freeze
modes — as would be used over time in an actual application.

SmartPower generates detailed hierarchical reports of the power consumption of a design for easy
evaluation. This enables you to locate the power consumption source and take appropriate action to reduce
the power if possible.

SmartPower supports use of files in the Value-Change Dump (VCD) format, as specified in the IEEE 1364
standard, generated by the simulation runs. Support for this format lets you generate switching activity
information from ModelSim or other simulators, and then utilize the switching activity-over-time results to
evaluate average and peak power consumption for your design.

See SmartPower User Guide

68

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartpower_ug.pdf

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Program and Debug Design

Generate FPGA Array Data

The Generate FPGA Array Data tool generates database files used in downstream tools:

o *.db used for debugging FPGA Fabric in SmartDebug
e *map files used for Programming

e RAM structural information used in ‘Configure Design Initialization and Memories’ tools

Double-click Generate FPGA Array Data or right-click Generate FPGA Array Data in the Design Flow
window and click Run to generate FPGA Array Data. Before running this tool, the design should have
completed the Place and Route step. If not, Libero SoC runs implicitly the upstream tools (Synthesis,

Compile Netlist, and Place and Route) before it generates the FPGA Array Data.

Top Module(root): pf_pde_to_ddr3_top =2 o @'

Tool
- » Create Design
L, [F- ¢ Constraints
v - » Implement Design
=I- ¥ Program and Debug Design

*L| Generate FPGA Array Data

*_| Configure Design Initialization Data and Memories

*L| Generate Design Initialization Data
-I- ¢ Configure Hardware
I+l Programming Connectivity and Interface
& Configure Programmer

: fss; Device 170 States During Programming - JTAG Mode Only

= Configure Programming Opticns

@ Configure Security

P Program Design

» Program 5P Flash Image

¥ Debug Design

Configure Permanent Locks for Production
Handoff Design for Production

Handoff Design for Debugging

Figure 43 - Generate FPGA Array Data

WY W |t

Design and Memory Initialization

Configure Design Initialization Data and Memories

The initialization sequence consists of three stages. The initialization sequence is implemented by means of
clients called "initialization clients", one for each stage, placed in the non-volatile memories of the chip.

The Configure Design Initialization Data and Memories tool allows you to define the specification of this

initialization sequence.

Note: The Configure Design Initialization Data and Memories tool can be invoked only after successful

completion of the Generate FPGA Array Data step.

69

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

{ Design Initiaization /" uPROM \/" sNvM '/ SPIFlash \/” Fabric RAMs '}
e |

In design initiakzation, user design blocks such as LSRAM, USRAM, fransceiver configurations, and PCle can be initialized a5 an option using data stored in the non-volatile storage memory,
The initiakization data can be stored in uPROM, SNVM, or an external SPT Flash,

Folow the below steps to program the initialization data:

1. Set up your fabric RAMs initiaization data, if any, using the 'Fabric RAMs' tzb
= the storage location of the initislization data

3.6 e the initialzation dients

4. Generate or export the bitstream

5. Program the device

Desgn mitalization spedfication
First stage (sNVM)
In the first stage, the initialization sequence asserts FABRIC_POR_N, waits for 1/0s and Banks to be up and asserts GPIO_ACTIVE and HSIO_ACTIVE.
Second stage {shvM)

In the second stage, the initi on sequence initialk the PCle blocks present in the design.

Start address for second stage initialzation dient: 0x 00000000

Third stage (uPROM/sNVM/SP1-Flash)

In the third stage, the initialization sequence initializes non-PCle XCVR blocks and Fabric RAMs present in the design.
Memory type for third stage initiakzation dient: & uPROM

shivM
External SPIFlash (Non-authenticated)

Start address for third stage inibialzation dient: 0x 00000000

Time Out (s): 128

Custom configuration fle:

Figure 44 - Design and Memory Initialization

First Stage (SNVM)

In the first stage, the initialization sequence asserts the FABRIC_POR_N signal, waits for 1/Os and Banks to
be up, and asserts the GPIO_ACTIVE and HSIO_ACTIVE signals. The initialization client for this stage is
always placed in sSNVM at the last page in the SNVM memory location.

Second Stage (SNVM)

In the second stage, the initialization sequence initializes the PCle blocks present in the design. The
initialization client for this stage is named INIT_STAGE_2_SNVM_CLIENT. It is always placed in SNVM, and
at the start address of the user’s choice. The start address can only be at the start of an SNVM page (page
boundary). Each sSNVM page is 252 bytes in size, so the valid start addresses (Hex) are 0x0, 0x100, 0x200
and so on. Only the plain text non-authenticated client is supported for initialization.

Third Stage (UPROM/sNVM/SPI Flash)

In the third stage, the initialization sequence initializes any non-PCle XCVR blocks and Fabric RAMs present
in the design. The initialization client for this stage is placed in the memory type of the user’s choice
(UPROM/sNVM/External SPI Flash). If the design does not have any non-PCle XCVR blocks or Fabric
RAMs then this stage of the initialization sequence is not needed. The third-stage initialization client is not
created.

Memory Type for third stage Initialization Client
Select one of the following memory type as the third-stage initialization client:

e UPROM - For uPROM, the name of the initialization client is INIT_STAGE_3_UPROM_CLIENT. Its
start address is at the user's choice, subject to the limitation that the start address can only be at the
start of a UPROM block. Each UPROM block is 256 words, so the allowed start addresses (Hex) are
0x0, 0x100, 0x200, and so on.

e sNVM - For SNVM, the name of the initialization client is INIT_STAGE_3_SNVM_CLIENT. Its start
address is at the user's choice, subject to the limitation that the start address can only be at the start of
an sNVM page (page boundary). Each sSNVM page is 252 bytes long, so the allowed start addresses

70

PolarFire Design Flow User Guide Q Micmsemi,

Time-Out

Power Matters.”

(HEX) are 0x0, 0x100, 0x200, and so on. Only the plain text non-authenticated client is supported for
initialization.

e External SPI-Flash (Non-authenticated) - For SPIFLASH, the name of the initialization client is
INIT_STAGE_3_SPIFLASH_CLIENT. The user can select the SPI clock divider value.

SPI Clock Divider Value

For External SPI Flash Memory, the user can use the adjacent drop-down menu to set the clock divider
value. Choose the value that meets the minimum clock width requirement of the external SPI Flash. The
allowed values are 1, 2, 4, or 6. The default value is 1.

A time-out of up to 128 seconds can be selected from the drop-down menu for the completion of all three
stages of initialization process. The default setting is 128.

Custom Configuration File

Apply

Discard

The Custom Configuration File contains signal integrity parameters for Transceivers. Click the Browse
button at the far right to navigate to and select a custom configuration file for Transceiver solutions. Contact
Microsemi Tech Support for details.

Click this button to save the configuration for design initialization data. Generation of the initialization clients
can be done by running the ‘Generate design initialization data’ tool. For details, see Generate Design

Initialization Data.

Click this button to remove unsaved changes and reset to the last saved settings.

See Also
Generate Design Initialization Data

71

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Configure uPROM

Add

Edit

Delete

Use the uPROM tab to manage and configure user-specific data clients targeted for uPROM memory.

[Deson intalzaton) UPROM® sy \ /5P Flash \/ Fabnc RAMs |

Apply || Dsewd || hHep
Usage statistics Chents
Available memory(3-bit words): 52224 Add,..
Used mamory(3-bit words): = 7
Frea memory(@bitwords) : 52224 Cliert Marne Seart Address 9-bit wards

Figure 45 - Configure uPROM

Use the Add button to add a uPROM client. When a uPROM client is added, it appears in the spreadsheet-
like list.

See Add uPROM Client

Use the Edit button to edit the uPROM client. If there are multiple uPROM clients, first select the client from
the spreadsheet-like list and then click Edit.

When changes are made to the configuration of any of the uPROM client, then their ‘Edited’ state is
indicated by an asterisk (*) next to the uPROM tab'’s title, and also an asterisk (*) next to the title of the main
window of the Design and Memory Initialization step. When the edits are saved , then the uPROM tab’s
asterisk (*) disappears. All the edits present in all the tab can be saved in one go by clicking on the ‘Save’
icon on Libero’s toolbar. When there are no edits present in any of the tabs, then the asterisk (*) next to the
title of the main window disappears.

See Add uPROM Client

Use the Delete button to delete an uPROM client. If there are multiple uPROM clients, first select the client
and then click Delete.

Load Design Configuration

Click this button to load in the design’s original uPROM configuration file in
<project>/component/work/UPROM.cfg. This button is grayed out if the design does not have an original
uPROM configuration file. This configuration is changed whenever the design is updated in the design
window, If there are changes made to this design configuration after the latest Apply, Libero SoC gives a
clear visual indication that a newer design configuration is available by two means:

¢ an info icon appears next to the button ‘Load design configuration’,
e aninfo icon is shown next to the uPROM tab title.

72

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

The tool-tip on both icons contains the time-stamp information of the design configuration file. The icons
disappear after the user clicks Apply the next time.

Usage Statistics

Memory usage for the uPROM is reported in the pie chart.
Apply

Click to commit the changes.
Discard

Click to discard changes made and load the last saved configuration.

See Also
Tcl command configure _uprom

Add/Edit uPROM Client

Click Add or Edit to open a dialog to add/edit a uPROM client.

Add UPROM Client L2 eS|
Client name: ||
uPROM
@ Content from file: E]

Format: |Microsemi Binary 9-bit -

() Content filled with 0s

|
4l-|

Start address: 0x 0
Mumber of 9-bit words; Decimal

IUse for initialization of RAMs

Use content for simulation

o) (et

Figure 46 - Add uPROM Client Dialog

73

PolarFire Design Flow User Guide O M’bmsemi.

Power Matters.”

Client name

Enter the name of the uPROM client to be added

Content from File

Navigate to and specify a file, the content of which is to be used to fill the uPROM.

Content filled with 0s

Populates the uPROM with zero's.

Start Address

Specifies the start address (in HEX) of the uPROM client. If there are multiple uPROM clients, the start
address must not overlap. A warning message appears if there is address overlapping of uPROM clients.
Valid start addresses range from 0 to CBFF (Hex).

Number of 9-bit words

Specifies the number (in decimal) of 9-bit words to populate the uPROM. If the number of 9-bit words
exceeds the memory size of the uPROM, an “out-of —bounds” warning message appears.

Use for initialization of RAMs
This option is disabled and unavailable from the Design and Memory Initialization tool.
Use Content for simulation

This option is disabled and unavailable from the Design and Memory Initialization tool.

Configure sNVM

Use the sNVM tab to manage and configure sNVM clients.

{ Demgn initskention 1 UPRDM ' SRS\ 5 Finsh W Mebos RAMS |

(- e e
Linagm stasracs iz
Aumiable memory n pagesk 2211 PR

Used meermry i age)
Froe marmery Gn pages} = Chend Name Start Page MNumber of bytes

Figure 47 - SNVM Tab

74

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Add

Click Add to open the Add Client dialog. Four different types of SNVM clients can be added:
e PlainText NonAuthenticated: 252 user bytes per page.
e PlainText Authenticated: 236 user bytes per page.
o CipherText Authenticated: 236 user bytes per page.
e USK: 96 user bytes. The USK client occupies exactly 1 page.
Note: Only one USK client in the sSNVM is allowed.
When an authenticated client is present in the sNVM, a USK client must be necessarily present too.

Adding Text Clients

See Add Text Client

Adding a USK Client

See Add USK Client
Edit

Use the Edit button to edit the SNVM client’s configuration. If there are multiple SNVM clients, first select the
client you want and then click Edit.

When changes are made to the configuration of any of the SNVM client, then their ‘Edited’ state is indicated
by an asterisk (*) next to the SNVM tab’s title, and also an asterisk (*) next to the title of the main window of
the Design and Memory Initialization step. When the edits are saved , then the SNVM tab’s asterisk (*)
disappears. All the edits present in all the tab can be saved in one go by clicking on the ‘Save’ icon on
Libero’s toolbar. When there are no edits present in any of the tabs, then the asterisk (*) next to the title of
the main window disappears.

Delete

Use the Delete button to delete an sSNVM client. If there are multiple SNVM clients, , first select the client you
want and then click Delete.

Load Design Configuration

Click this button to load in the design’s original SNVM configuration file in
<project>/component/work/sNVM.cfg. This button is grayed out if the design does not have an original
sNVM configuration file. This configuration is changed whenever the design is updated in the design
window, If there are changes made to this design configuration after the latest Apply, Libero SoC gives a
clear visual indication that a newer design configuration is available by two means:

e aninfo icon appears next to the button ‘Load design configuration’,
e aninfo icon is shown next to the SNVM tab title.

The tool-tip on both icons contains the time-stamp information of the design configuration file. The icons
disappear after the user clicks Apply the next time.

Usage Statistics

Memory usage for the SNVM is reported in the pie chart.

75

PolarFire Design Flow User Guide

Apply

Discard

Click to commit the changes.

Click to discard changes made and load the last saved configuration.

See Also
Tcl command configure_snvm
PolarFire FPGA Programming User Guide

Add sNVM Clients

Two different kinds of SNVM clients can be added:
e Text Client
e USK Client

Add Text client

Use the dialog box to add text clients:
e PlainText NonAuthenticated: 252 user bytes per page.
e PlainText Authenticated: 236 user bytes per page.
e CipherText Authenticated: 236 user bytes per page.

& Microsemi

7| Add PlainText MonAuthenticated client

Client name: |
sMVM
() Content from file:
Format: Microsemi-Binary 8/16/32 bit -
(71 Content filled with 0s
@ Mo content {dient is a placeholder and will not be programmed)
Start page (decmal): 0 = Ox0

Mumber of bytes (decmal): 0 0 page

[Use content for simulation
D Use as ROM

] [Cancel

Figure 48 - Add Plain Text client

Power Matters.”

76

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Client name

Enter the name of the sSNVM client to be added.

Content from File

Navigate to and specify a file, the content of which is to be used to fill the sSNVM.

Content filled with 0s

Populates the sSNVM with zero’s.

No Content
client is a placeholder and will not be programmed.

Start Page
Specifies the start page (in decimal) of the sSNVM client. SNVM client address starts at page boundaries. If
there are multiple SNVM clients, their start page cannot be the same. A warning message appears if there is
address overlapping of SNVM clients. Valid start page range from 0 to 220 (Decimal).

Number of bytes

Specifies the total number (in decimal) of bytes to populate the sNVM. If the number of bytes exceeds the
memory size of the sNVM, an “out-of —bounds” warning message appears. Valid ranges is from 1 to 47376

Use Content for simulation
Check if this client should be loaded for the simulation run.
Use as ROM

Check if this client should be used as read-only-memory (ROM).

Add USK client

This client holds the USK. It is always 1 page (96 bytest) in size. There is no total byte entry for the USK
client.

77

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

%] Add USK Client |2 i)

This dient holds the USK. Itis always 1 page in size.

L3

Start page (dedmal): b 0x0

USK Key (24 HEX chars): 0% Eol

[¥] Reprogram
[7] Use content for simulation

Use-as ROM

Help | ok || caneel

Figure 49 - Add USK Client

Start Page
Start page can vary between 0 and 220.

USK Key
Enter a USK key (24 Hex characters). A random key can be generated by clicking the padlock icon to the
right of this field.

Reprogram

Check if this client should be programmed.
Use Content for Simulation

Check if this client should be loaded for the simulation run.
Use as ROM

Check if this client should be used as read-only-memory (ROM).

Configure SPI Flash

The SPI Flash tab allows you to enable Auto Update, select the SPI Flash Manufacturer, and configure SPI
flash clients. The configuration is saved in the spiflash.cfg file in the Libero design implementation folder.

78

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

{ Deson Initialzaton "\ UPROM "\ sivm /[SPIFlash™ '\ RAM InSalmation

7! Enable Auto Lipdate

Manufacturer: |MICRON * | Part No: MT250L0 1GEBBSESF-05IT

Ukage statstics SP] Flash Clients.
Avalable memory (MB):1023 add... v Edit | Delete
Used memory (M): 18
Fres memor y{(MB): 1005 Program Taiaa Type o e A::n ndii“d a"u,n
ress ress rsicn
myspil SPI Bitseam for Recovery/Galden 0 %ﬁwwmmw, o300 Dag0sclf 0
B Usedspace 51 Bitstream for Recavery fGolden|
W reeny i o A |
= [sepy | [Diseard |

Figure 50 - SPI Flash Tab

Enable Auto Update

Check Enable Auto Update to enable Auto Update on the target device. The bitstream generated within
Libero will enable this feature. If this is checked, a total of two SPI Bitstreams can be added. One SPI
Bitstream will be for Auto Update and the other will be for Recovery/Golden. The tool enforces the
Recovery/Golden bitstream to be at index 0 and the Auto Update bitstream to be at Index 1. The Auto
Update Bitstream Design version must be greater than the design version of the Recovery/Golden bitstream.

Manufacturer

Click the pull-down menu to see the supported SPI Flash manufacturer/vendors and the part number. The
table below lists the supported vendors and part number.

Manufacturer Part Number Capacity Sector Size

MICRON MT25QL01GBBB8ESF-0SIT | 1GB 4KB

The SPI Flash Part Number is displayed to the right of the manufacturer/vendor name. The Memory size (in
MB) for the SPI Flash is displayed in the Usage Statistics above the pie chart.

Note: This version of the programmer does not support SPI Flash security. Device security options such
as "Hardware Write Protect” should be disabled for the External SPI Flash device.

Usage Statistics

Available Memory (MB) reflects the SPI Flash vendor and part selected.
e MICRON

Memory usage for the SPI Flash is reported in the pie chart.
SPI Flash Clients

SPI flash clients appear in a spreadsheet-like format when they are added and configured.

79

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

| Demgn tntakzatan)/ LPROM)/ M SPLFash® |/ Fabrc RAMS 1\

| feoly | Dscaed Help
Enable Auto Update
Marufacturer: [MICRON = Part bio: MT 25000 1GAEBAESF 0SIT

Usage stasstics 51 Flash Chenits

| — Edit..., Delete

- Start End Design
] . T ndlex c Fil s
rogram Mame ype Indles ontert File ot ol st
mys1 5P Bitgtream for AP z o0 Oxded

2 k o F o
myspi2 5P1 Bitsiream for Recovery/Gokden 0 AR LR . O0W00OxBOGEIF O

B sedspace SF1 Besweam for Recovery iGoden
W Ceesenee i Bkean o A gl |

Figure 51 - SPI Flash Clients

SPI Bitstream Client for Recovery/Golden

A SPI client for Recovery/Golden is required if a SPI Bitstream is added. There can only be one SPI
Bitstream configured as Recovery/Golden. It is highlighted in yellow in the spreadsheet-like display. An error
message appears if none is configured or more than one is configured. The SPI Bitstream Client for
Recovery/Golden must have a design version smaller than the design version for the SPI Bitstream Client
for Auto Update.

Index 0 is reserved for this client.

SPI Bitstream Client for Auto Update

This client is highlighted in green in the spreadsheet-like display. To add a SPI Client for Auto Update, the
Enable Auto Update checkbox must first be checked. This client is optional. The design version of this client
must be greater than the design version for the SPI Bitstream Client for Recovery/Golden.

Index 1 is reserved for this client.

Data Storage Client
See Add Data Storage Client

Add
Click Add to add a SPI Bitstream client or Data Storage client. A total of up to 255 SPI Bitstream clients
(including one client for Recovery/Golden and one client for Auto Update and the rest for IAP) can be added.
One of the clients must be the Recovery/Golden client.

Edit
Click Edit to modify the configuration of the SPI Bistream client or Data Storage client. If there are multiple
clients in the list, select the client you want to modify and click Edit.

Delete

Use Delete to delete a SPI Flash client. If there are multiple SPI Flash clients, first select the client you want
to delete and then click Delete.

80

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

Apply
Click Apply to commit the changes since the last commit. The changes are saved in the spiflash.cfg file in
the Libero Design Implementation folder.

Discard
Click Discard to discard the changes made and load the last saved configuration.

See Also

Add SPI Bitstream Client

Add Data Storage Client

Tcl command configure_spiflash
PolarFire FPGA Programming User Guide

Add/Edit SPI Bitstream Client

Click the Add button in the SPI Flash tab of the Configure Design Initialization Data and Memories tool to
add a SPI Bitstream client and the Edit button to modify an existing SPI Bitstream client.

(®) Add SPI Bitstream Client [

Name: |

Content
(@ SPI Bitstream file for TAP
() SPI Bitstream file for Recovery/Golden

() SPI Bitstream file for Auto Update

Design version:

) Filled with 1s
Start address (HEX): Ox 400 5
Size in bytes (decmal): 0

o) (o

Figure 52 - Add/Edit SPI Client

81

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Name

Enter the name of the SPI Bistream client to be added. Up to 32 alphanumeric characters are allowed.
When editing an existing SPI Flash client, the client name cannot be changed.

Content

Check one of the following to select the type of SPI Bitstream to be added. A total of 255 SPI clients can be
added for IAP.

SPI Bitstream for |AP
Check this checkbox to add a SPI bitstream client for IAP.
SPI Bitstream for Recovery/Golden

Check this checkbox to add a client for Recovery/Golden. It is mandatory and only one is allowed. This
option is disabled if one is already added. The existing one can be edited or deleted.

SPI Bitstream for Auto Update

This is available only when Auto Update is checked in the Configure SPI Bitstream tab. The SPI bitstream
client is optional and only one is allowed. This option is disabled if one is already added. The existing one
can be edited or deleted.

Browse Button

Click the Browse button to navigate to a SPI file (*.spi) location. The content of this file is used to export the
SPI Bitstream Image file.

Filled with 1s

Check this checkbox to fill the content of the SPI Bitstream client with 1s. If the content is filled with 1s,
specify a client size. It must be greater than 0. Golden or Auto Update SPI clients cannot be filled with zeros.
They require a content file.

Start Address (HEX)

The first available start address is 0x400 (the first 1024 bytes are reserved for the SPI directory and are not
available).

Size in bytes (decimal)

This field displays the number of bytes (in decimal) of the client based on the specified bitstream (*.spi) file
used to load in the content. The size can be increased but not decreased.

A new client is validated against existing clients. Address overlapping of clients is not allowed and is flagged
as an error.

See Also
Tcl command "set_client " on page 122
PolarFire FPGA Programming User Guide

Add/Edit Data Storage Client for SPI Flash

Click the Add button in the SPI Flash tab of the Configure Design Initialization Data and Memories tool to
add a Data Storage client. Click the Edit button to modify an existing Data Storage client.

82

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

PolarFire Design Flow User Guide C Mmsem’.

Power Matters.”

Feports & X I StartFage & X | @ sdl & X Design and Memary Initialization & X

[Design Initialization \/” uPROM \/” shvm /" SPIFlash \/ Fabric RAMs

Apphy Discard | Help !

Enable Auto Update

Manufacturer: [M_ICREH :: Part Ho: MT25QL0O1GBEBBESF-0SIT
Usage statistics SFPI Flash Clients
Available memory (MB):127 | Add.. 3 Edit... Delete
e i Add SPI Bitstream Client |

Free memory (MB) : 127

Figure 53 - Add Data Storage Client (SPI Flash Tab)

Type Index
Add Data Storage Client I i

(> Add SPI Flash Data Storage Client =571
Name:
Content
@ Memory file:
Format:
Filled with 1s
Start address (HEX): 0x 400
Size in bytes (decimal):]
Help | oK | | Cancel

Figure 54 - Add/Edit Data Storage Client Dialog
Note: Intel Hex file type is supported for this release.

Name

Enter the name of the Data Storage client to be added. Up to 32 alphanumeric characters are allowed.
When editing an existing Data Storage client, the client name cannot be changed.

Content
Select one of the following options.

Memory file

Enter the name of the Memory file or click the Browse button to navigate to a Memory file location. Currently,
only Intel-Hex format memory files are supported. The memory file will be loaded into the SPI-Flash at the
desired start address.

83

PolarFire Design Flow User Guide C Mlcrbseml

Filled with 1s

Power Matters.”

Check this checkbox to fill the content of the Data Storage client with 1s. If the content is filled with 1s,
specify a client size. It must be greater than O.

Start Address (HEX)

The first available start address is 0x400 (the first 1024 bytes are reserved for the SPI directory and are not
available).

Size in bytes (decimal)

This field displays the number of bytes (in decimal) of the client based on the specified Data Storage file
used to load in the content. The size can be increased but not decreased.

A new client is validated against existing clients. Address overlapping of clients is not allowed and is flagged
as an error.

See Also

Tcl command configure spiflash
Configure SPI Flash

PolarFire FPGA Programming User Guide

RAM Initialization

The RAM Initialization tab allows you to select the Initialization options for the memory blocks in the design.
The memory blocks include:

* Dual-Port SRAM
* Two-Port SRAM
* USRAM

{ Design Inibalization W/ GPROM A/ s \/ SP1 Flash %/ Fabric RaMs '\,

Usage statistios Clents
LSRAM Memory Load e sk confiour 5o Bt
Avalable Memory(By 174063616
Used Memory{Bytes) 0 Client Mame Deprr?ﬁ\TP:d-th Dep-:aort‘:uaudth Memory Content

Free Memory(Bytes) 174063616

_lju_m\u_curemiqsmm_m. . 327680 327680 Mo content

M Used space

| Free space
WSRAM Memory

Avalable Memory(Byte: 8515584
Used Memory{Bytes): [}
Free Memory(Bytes) : 8515584

| Lised space
| Free space

Figure 55 - RAM Initialization

84

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

This tab shows a list of logical memory blocks in the design. Expand each frame to open the corresponding
physical memory block.

Depth x Width Configuration
The Depth x Width of the memory block is displayed, e.g. 128x24.
Optimization Options

Memory blocks can be optimized for high speed or low power. Select the option that matches the selection
in the configurator of the memory block.

Initialization Options

Three options are available: No content, Content Filled with Zeros and Memory File.

No Content
The memory block is not initialized.

Content Filled with Zeros
The memory block is filled with zeros for initialization.

Memory File

Click the Browse button to navigate to the location of a memory file and import the file to the memory block.
By default, the same memory file as specified in the memory configurator is used. The supported memory
file formats are Intel-HEX (*.hex) or Motorola (*.s).

Load Design Configuration

Click to load the initial Design Configuration content. All the changes made in the current RAM Initialization
tab are ignored (including the changes saved with the Apply button)

Apply
Click the Apply button to save the changes made in this tab.
Note: The Apply button saves the changes only. For the initialization of the memory block to take effect, go
back to the Device Initialization tab and click Generate Initialization Clients.

Discard

Click the Discard button to discard any changes made in this tab.

Generate Design Initialization Data
To generate the initialization clients, do one of the following in the Design Flow window:
e Double-click Generate Design Initialization Data
or
¢ Right-click Generate Design Initialization Data and choose Run
Libero SoC carries out the following three actions:

¢ Generates the memory files corresponding to the three stages of the initialization sequence.
¢ Removes all pre-existing initialization clients.

85

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Creates the initialization clients for each stage and places them in their target memories.

e The first stage initialization client is always created, and is always placed in SNVM. It is always
placed at start address OxDCO0O (page 220).

e The second stage initialization client is created only when there are PCle blocks present in the
design. It is always placed in SNVM. It is placed at the start address specified by the user in the
‘Design Initialization’ tab of the ‘Configure Design Initialization Data and Memories’ tool.

e The third stage initialization client is created only when there are Fabric RAMs in the design or
non-PCle transceiver blocks in the design. It can be placed in any of uPROM, sNVM, or SPI
memories at the user-specified start address. The user can specify both the target memory and
the target start address in the ‘Design Initialization’ tab of the ‘Configure Design Initialization
Data and Memories’ tool.

See Also
Configure Design Initialization Data and Memories

generate design initialization data

Configure Hardware

Programming Connectivity and Interface

In the Libero SoC Design Flow window, expand Configure Hardware and double-click Programming
Connectivity and Interface to open the Programming Connectivity and Interface window. The
Programming Connectivity and Interface window displays the physical chain from TDI to TDO configuration.

The Programming Connectivity and Interface view enables the following actions:

Select Programming Mode — Select JTAG. or SPI Slave mode. SPI Slave mode is only supported by
FlashPro5.SPI Slave mode is not supported for PolarFire devices.

Construct Chain Automatically - Automatically construct the physical chain

Add Microsemi Device — Add a Microsemi device to the chain

Add Non-Microsemi Device — Add a non-Microsemi device to the chain

Add Microsemi Devices From Files — Add a Microsemi device from a programming file
Delete Selected Device — Delete selected devices in the grid

Scan and Check Chain — Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the grid

Zoom In — Zoom into the grid
Zoom Out — Zoom out of the grid

Hover Information

The device tooltip displays the following information if you hover your pointer over a device in the grid:

Name - Editable field for a user-specified device name. If you have two or more identical devices in
your chain you can use this field to give them unique names.

Device - Device name.
File - Path to programming file.

Programming action — When a programming file is loaded, the user can select a programming action
for any device which is not the Libero design device.

IR Length - Device instruction length.

TCK - Maximum clock frequency in Hz to program a specific device; Libero uses this information to
ensure that the programmer operates at a frequency lower than the slowest device in the chain.

86

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

TDI $2

Libero design device

| Name: | MPF300TS _ES
| Device | MPF300TS_ES
|File |

|F'ru:|grarr'|rr'|ing action: |
|IR: 8
|TCk: 10000000

Figure 56 - Device Information

Device Chain Details

The device within the chain has the following details:

Libero design device — Has a red circle within Microsemi logo. Libero design device cannot be
disabled.

Left/right arrow — Move device to left or right according to the physical chain.

Enable Device - Select to enable the device for programming; enabled devices are green, disabled
devices are gray.

Name - Displays your specified device name.
File - Path to programming file.

Right-Click Properties

Set as Libero Design Device - The user needs to set Libero design device when there are multiple
identical Libero design devices in the chain.

Enable Device for Programming - Select to enable the device for programming; enabled devices are
green, disabled devices are gray.

Configure Device — Ability to reconfigure the device (for a Libero SoC target device the dialog
appears but only the device name is editable).

Load Programming File — Load programming file for selected device. (Not supported for Libero SoC
target design device.)

Set Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
Select Program Procedure/Actions (Not supported for Libero SoC target design device):
e Actions - List of programming actions for your device.

e Procedures - Advanced option; enables you to customize the list of recommended and optional
procedures for the selected Action.

Move Device Left/Right — Move device in the chain to left or right.

87

PolarFire Design Flow User Guide C Mfcrosem;[

Power Matters.”

Set As Libero Design Device
Configure Device...

Enable Device for Programming...
Load Programming File..

Set Serial Data...

Select Program Procedure/Actions...
Move Device Left...

Figure 57 - Right-click Properties

Programmer Settings

In the Libero SoC Design Flow window, expand Configure Hardware,right-click Configure Programmer
and choose Select Programmer to open the Select Programmer dialog. The dialog displays the name,
type, and port of your programmer if it is connected.

A drop-down list shows all connected programmers, allowing you to select the programmer you want. If no
programmers are connected, you can connect a programmer without closing the dialog and then click
Refresh. The connected programmer will appear in the drop-down list.

| B Select Programmer ‘ |
| |
e : |89313 s m |

FlashPro4

Programmer type:

Port: usb89313 (USB 2.0)

Figure 58 - Programmer Settings for Connected Programmer
Double-click Configure Programmer, or right-click Configure Programmer and choose Programmer
Settings to view the Programmer Settings dialog. You can set specific voltage and force TCK frequency
values for your programmer in this dialog.

88

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

[®] Programmer Settings S

| FlashPro | FlashPro Lite FlashPro3 FlashPro4 | FlashPras |

E{_} Set Vpump

FP3x Settings

@ Free running clock (") Discrete clocking

E} Force TCK Freguency

4 MHz

] e

Figure 59 - Programmer Settings Dialog Box

The Programmer Settings dialog box includes setting options for FlashPro5/4/3/3X.
Limitation of the TCK frequency for the selected programmer:

e FlashPro5: 1, 2, 3, 4, 5, 6, 10, 15, 30 MHz

e FlashPro4:1, 2, 3,4,5, 6 MHz

e FlashPro3/3X: 1, 2, 3, 4, 6 MHz
TCK frequency limits by target device:

¢ Refer to target device data sheet

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the
TCK frequency setting selected by you in the Programmer Settings dialog box unless you also select the
Force TCK Frequency checkbox.

FlashPro5/4/3/3X Programmer Settings

For FlashPro5/4/3/3X, you can choose the Set Vpump setting or the Force TCK Frequency. If you choose
the Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you can switch
the TCK mode between Free running clock and Discrete clocking. After you have made your selections(s),
click OK.

Alert: Do not connect VPUMP to a PolarFire device.
Default Settings

e The Vpump option is checked to instruct the FlashPro5/4/3/3X programmer(s) to supply Vpump to the
device.
NOTE: VPUMP voltage will not be checked for the SmartFusion2/IGLOO2 and newer families of
devices. VPUMP does not need to be connected to the programmer for these devices.

e The Force TCK Frequency option is unchecked to instruct the FlashPro5/4/3/3X to use the TCK
frequency specified by the Frequency statement in the PDB/STAPL file(s).

e FlashPro5/4/3/3X default TCK mode setting is Free running clock.

89

PolarFire Design Flow User Guide

TCK Setting (ForceTCK Frequency)

If Force TCK Frequency is checked (in the Programmer Setting), the selected TCK value is set for the

& Microsemi

programmer and the Frequency statement in the PDB/STAPL file is ignored.

Default TCK frequency

When the IPD/STAPL file or Chain does not exist, the default TCK frequency is set to 4MHz. When more

Power Matters.”

than one Microsemi flash device is targeted in the chain, the FlashPro Express software passes through all

of the files and searches for the "freq" keyword and the "MAX_FREQ" Note field. The FlashPro Express
software uses the lesser value of all the TCK frequency settings and the "MAX_FREQ" Note field values.

Device I/O States During Programming -- JTAG Mode Only

In the Libero SoC Design Flow window expand Configure Hardware and double-click Device I/O states
during programming to specify the I/O states prior to programming. In Libero SoC, this feature is only

available once Layout is completed.

The default state for all I/Os is Tri-state.

To specify 1/O states during programming:
1.

3.

Note: 1/O States During programming will be used during programming or when exporting the bitstream.

0 —1/O is set to drive out logic Low
Last Known State: I/O is set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming
Z - Tri-State: /O is tristated

Specify I/O States During Programming - JTAG Mode Only

Load from file.. | | Save to file...

Show BSR Details

Port Name

Macro Cell

Pin Number

I/0 State (Output Only)

UNUSED

UNUSED

31

z

UNUSED

UNUSED

30

z

oK Cancel

Figure 60 - I/O States During Programming Window

Click OK to save your settings.

x

Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select
the 1/0s you wish to modify (as shown in the figure below).

Set the 1/0 Output state. You can set Basic I/O settings if you want to use the default /O settings for
your pins, or use Custom I/O settings to customize the settings for each pin. See the Specifying 1/0
States During Programming - I/O States and BSR Details help topic for more information on setting
your 1/O state and the corresponding pin values. Basic /O state settings are:

1 -1/O is set to drive out logic High

90

PolarFire Design Flow User Guide O M’bmsemi.

Power Matters.”

Configure Programming Options

Sets your Design Version and Silicon Signature.
Design name is a read-only field that identifies your design.

Design Version (number between 0 and 65535) - Specifies the design version to be programmed to the
device. This field is also used for Back-level protection in "Update Policy" on page 94 of the Configure
Security Wizard.

Silicon signature (max length is 8 HEX chars) - 32-bit user configurable silicon signature to be
programmed into the device. This field can be read from the device using the JTAG (IEEE 1149-1)
USERCODE instruction or by running the DEVICE INFO programming action.

[| Configure Programming Options P— — [ﬂ_hj

Design name: sdi
Design version (number between 0 and 65535):

Silicon signature (max length is 8 HEX chars): 0x

o] [con

Figure 61 - Configure Programming Options Dialog Box

Notes

SPI file programming for Auto Programming, Auto Update (IAP) and IAP/ISP Services currently can only
program security once with the master file. Update files cannot update the security settings. In addition,
Silicon Signature, and Tamper Macro can only be programmed with the master file and cannot be
updated.

Configure Security

Configure Security Wizard
The Configure Security Wizard is a GUI-based wizard that guides the user step by step on how to configure
custom security settings. The wizard has five steps executed in this sequential order:
1. User keys
Update Policy
Debug Policy

Microsemi Policy
JTAG/SPI Slave Commands

aprwnN

91

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

| ' Configure Security Wizard @

Encrypt bitstream with default key. No user keys or security settings are enabled.

Security key mode

@) Bitstream encryption with default key *) Custom security options

User keys
|
Update policy
I
Debug policy

Microsemi
factory
access

|
JTAG/SPI Slave
commands
policy

Save Summary to File... Back Next | Finish] [Cancel

Figure 62 - Configure Security Wizard

Summary Window

The summary window displays the summary of the current configuration settings. The window will scroll to
the current page as you move from page to page.

Security Key Mode

Two security key modes are available.

e Bitstream encryption with default key
This mode uses the default encryption key for security. The Next and Back button are disabled. All
steps are disabled. Custom User Keys and security settings are disabled.

e Custom security Mode
This mode allows you to configure custom security keys and settings. All steps are enabled. The Next
and Back button are enabled.

Back

Click Back to return to the previous step.

Next

Click Next to proceed to the next step.

92

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.~
Finish

Click Finish to skip steps and complete the configuration.
Save Summary to File

Click Save Summary to File to save the display in the Summary field to a file.

The User Keys are configured in this step. All keys are 256 bits (64 HEX characters).

.| Configure Security Wizard ﬂ
Disable all factory key modes and configured security settings. &
Use FlashLock/UPK1 to temporarily enable settings during one programming/debugging session. |

ser keys]
UPK1 and UEK1 will be programmed and available for use.
UPK2 and UEK2 will be programmed and available for use. E |
Update Policy
Fabric can be updated using a bitstream encrypted with UEK1 or UEKZ,
sNYM can be updated using a bitstream encrypted with UEK1 or UEK2.
Debug Policy
DPK has not been provided and will not be programmed.
SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.
SmartDebug sMVM debug is enabled.
JTAG or SPI Slave UJTAG is enabled. -
Security key mode
(7 Bitstream encryption with default key @ Custom security options
|
User Key Set 1 (UKS1)
Uzer keys FlashLodk/UPK1 protects all security settings. You are required to configure it. ||
FlashLockfUPK1 (54 HEX chars):
| bo
T s E_I can use User Encryption Key 1 (UEK1) for updating the Fabric, uPROM, and sNVM or disable it.
|| Disable UEK1
‘ UEK1 (User Encryption kKey 1) (64 HEX chars):
P
Debug policy
User Key Set 2 (UKS2)
You can optionally configure User Key Set 2 (UKS2) for a second encryption key.
‘ [7] Disable UEK2
UEK2 (User Encryption Key 2) (64 HEX chars):
& o
‘ User Pass Key 2 (UPKZ2) protects UEK2 and is required if you use UEK2.
UPK2 (User Pass Key 2) (64 HEX chars):
& o
Help |Save Summary to File... Back l Mext] I Finish | { Cancel]
=

Figure 63 - User Keys
User Key Set 1 (UKS1)

UKS1 is enabled by default. This key protects all security settings. This key is required and must be a string
of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a random key.

93

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

User Encryption Key 1 (UEK1)

UEK1 is enabled by default. Click Disable if you want to disable it. If enabled, the key is required and must
be a string of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a
random key.

Use UEKT1 for updating the Fabric, uPROM, and sNVM or disable it.

User Encryption Key 2 (UEK2)

UEK2 is enabled by default. Click Disable if you want to disable it. If enabled, the key is required and must
be a string of 64 HEX characters. Enter the key or click the padlock icon at the far right to generate a
random key.

Use UEK2 as a second encryption key for updating the Fabric, uPROM, and sNVM or disable it

User Pass Key 2 (UPK2)

UPK2 is required if UEK2 is enabled. Enter the key or click the padlock icon at the far right to generate a
random key.

Update Policy

Field updates are enabled by default. Use this page to disable field updates and to specify field-update
protection parameters.

|a ' Configure Security Wizard @

Update Policy -
Fabric can be updated using a bitstream encrypted with UEK1.
sHVM can be updated using a bitstream encrypted with UEKL.

Debug Policy -
Security key mode

() Bitstream encryption with default key (@) Custom security options
Field updates are enabled by default. You can disable updates by setting options below.
Use FlashLock/UPK1 to temporarily enable disabled settings.
User keys
Fabric update protection: [Updates allowed using user defined encryption keys; FlashLock/UPK1 is not requiret 'l
sNVM update protection: [Updates allowed using user defined encryption keys; FlashLock/UPK1 is not requirec ']
[Back Level protection
Update policy
(3] Design version (number between 0 and 65535):
Back Level version (number between 0 and 65535):
Disable programming interfaces:
Debug policy [] Auto Programming and IAP Services
[37AG
[] sP1 Slave
Microsemi 2 : : .
factory Disable bitstream programming actions (JTAG/SFI Slave):
SR [] Program
[] Authenticate
JTAG/SPI Slave [verify

commands

policy Reset to default

’Save Summary to File...l | Back I I Next | [Finish | | Cancel

Figure 64 - Update Policy

94

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

Fabric update protection

Two options are available:
e Disable Erase/Write operations
WARNING: The field update STAPL files (_uekl/_uek?2) will include plain-text FlashLock/UPK1
e Updates allowed using user defined encryption keys; FlashLock/UPK1 is not required for updates

SNVM update protection options:

Two options are available:
¢ Disable Write operations
WARNING: The field update STAPL files (_uek1/_uek?2) will include plain-text FlashLock/UPK1
e Updates allowed using user defined ecnryption keys; FlashLock/UPK1 is not required for updates

Back Level protection

When enabled, a design being programmed must be of a version higher than the Back Level version value
in the programmed device. This limits the design versions that the device can update. Only programming
bitstreams with Designer Version greater than the Back Level version are allowed for programming.

Design version (number between 0 to 65535)
Displays the current Design version (as set in the Configure Programming Options tool).

Back Level version (number between 0 to 65535)

Back level uses the Design version value to determine which bitstreams are allowed for programming. The
Back level version must be smaller than Design version. If not, a warning message appears.

Disable programming interfaces

The following programming interfaces can be disabled
e Auto Programming and IAP services
o JTAG
e SPI Slave

When all programming interfaces have been disabled, the device becomes one-time programmable (OTP).
The following error message is displayed:

"Device will not be reprogrammable because all programming interfaces have been permanently disabled.
The device is one-time programmable(OTP). To configure one-time programmable security, use the
Configure OTP Security tool.”

Disable Bitstream Programming Actions (JTAG/SPI Slave)

* Program

 Authenticate

* Verify

WARNING: The field update STAPL files (_uekl/_uek2) will include plain-text FlashLock/UPK1
The summary at the top of the wizard summarizes the result of the selection.

95

PolarFire Design Flow User Guide

Reset to Default

& Microsemi

Power Matters.”

Reset the options to default values. All options are unchecked.

Debug Policy

The Debug Policy page allows you to configure Debug Protections. By default, debugging is enabled.

Debug with DPK (Debug Pass Key) - Optional

Protect Debug with a 256-bit (64-character HEX) Debug Pass Key. Enter the key in the field or click the

padlock icon at the far right to generate a random key. This key is optional if you want a separate passkey to
enable access to disabled debug features during one debugging session.

If the DPK key is entered, then at least one option must be checked.

|| Configure Security Wizard

Debug Policy

Microsemi Factory Access

Security key mode

Update policy

Debug palicy

Microsemi
factory
access

DPK has not been provided and will not be programmed.

SmartDebug user debug access and active probes are enabled.
SmartDebug Live Probe debug access is enabled.

SmartDebug sNVM debug is enabled.

JTAG or SPI Slave UITAG is enabled.

JTAG (1149.1) boundary scan is enabled.

JTAG or SPI Slave reading of temperature and voltage sensor is enabled.

Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

Bitstream encryption with default key @) Custom security options

Debugging is enabled by default at this stage for design and debug.
Use FlashLock/UPK1 or DPK to temporarily enable access to disabled debug features during one debugging session.

DPK (Debug Pass Key) (64 HEX chars):
0x &
SmartDebug access control

| Disable user debug access and active probes
Disable Live Probe

[] pisable shvm

Disable UITAG command through JTAG interface
Disable JTAG (1149.1) boundary scan

Disable reading temperature and voltage sensor (JTAG/SFI Slave)

Reset to defaully\
L

:Sa\re Summaryloﬁle...} Back | Next J Finish j [Cancel

SmartDebug Access Control

Figure 65 - Debug Policy

All of the following are enabled by default for SmartDebug access. Check to disable access.
e Disable User Debug Access and Active Probe
e Disable Live Probe

e Disable sNVM

96

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

WARNING: Leaving SmartDebug access control enabled on production devices will allow anyone to
debug or access active probes, access Live Probe, or read the content of SNVM.

Three additional options are:
e Disable UITAG command through JTAG Interface

e Disable JTAG (1149.1) boundary scan
Disables JTAG (1149.1) commands. The following JTAG commands will be disabled: HIGHZ,
EXTEST, INTEST, CLAMP, SAMPLE, and PRELOAD. 1/Os will be tri-stated when in JTAG
programming mode and BSR control during programming is disabled. BYPASS, IDCODE, and
USERCODE instructions will remain functional.

e Disable reading temperature and voltage sensor (JTAG/SPI Slave)

The summary at the top of the page displays the results of the selection.

Microsemi Factory Access Policy

The page allows you to configure the policy for Microsemi Test Mode Access. Test mode access is required
for Failure Analysis on the device.

[0 | Configure Security Wizard Lﬁ

L R o e
ITAG or SFI Slave UITAG is enabled. A
JTAG (1149.1) boundary scan is enabled.

JTAG or SPI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

JTAG/SFI Slave User Commands Policy
PUF emulation is available.
External Fabric/sNVM design digest check requests through JTAG and SPI Slave are available. =
External zeroization through JTAG/SFI Slave is available. o

BT

Security key mode

() Bitstream encryption with default key (@) Custom security options

Microsemi factory test mode access is allowed by default.
This is required to perform Failure Analysis on the device.

User keys Use FlashLock/UPK1 to change access level.
Microsemi factory test mode access level
Update policy (@) Allow factory test mode access
() Disable factory test mode access
Debug policy
Reset to default
Microsemi
factory
access

JTAG/SPI Slave
commands
policy

| Help [SaveSummarytoFlIe...l ‘ Back] { Next J | Finish] l Cancel

Figure 66 - Microsemi Access Policy

Two options are available:
« Allow factory test mode access (default setting).

WARNING: This is not recommended for production devices.
« Disable factory test mode access

NOTE: Use FlashLock/UPK1 to change access level

97

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

JTAG/SPI Slave Command Policy

The page allows you to configure the policy for JTAG/SPI Slave User Commands. Three options are
available. Enabled is the default setting for all three options. Click the checkbox to disable any of the
settings.

« Disable all external access to PUF emulation through JTAG/SPI Slave

« Disable external Fabric/sNVM digest requests through JTAG/SPI Slave

WARNING: Repeated external Fabric digest calculations can impact device reliability. View Datasheet for
additional information.

« Disable external zeroization through JTAG/SPI Slave
WARNING: It is not recommended to leave zeroization enabled for production devices

[0 | Configure Security Wizard w

JTAG or SPI Slave UJTAG is enabled. .
JTAG (1149.1) boundary scan is enabled.
JTAG or SPI Slave reading of temperature and voltage sensor is enabled.

Microsemi Factory Access
Allow Microsemi factory test mode access. This is required to perform Failure Analysis on the device.

JTAG/SPI Slave User Commands Policy
PUF emulation is available.
External Fabric/sMVM design digest check requests through JTAG and SPI Slave are available.
External zeroization through JTAG/SPI Slave is available.

11

Security key mode

() Bitstream encryption with default key (@) Custom security options

PUF emulation is available by default

|| pisable all external access to PUF emulation

access

JTAG/SFI Slave
commands
policy

User keys
External Fabric/shVM digest requests JTAG/SPI Slave are available by default
[”] pisable external Fabric/shvM digest requests through JTAG/SPI Slave
Update policy External zeroization through JTAG/SPI Slave is available by default
I__I Disable external zeroization through JTAG/SFI Slave
Debug policy
Microsemi e
factory ‘Reset to default

[SavesummarytoFiIe...l ‘ Back] Next | Finish] l Cancel
L

Figure 67 - JTAG/SPI Slave Commands Policy

Security Features Frequently Asked Questions

I have configured the Security Wizard and enabled security in my design but | do not want to
program my design with the Security Policy Manager features enabled. What do | do?

Go to Configure Bitstream and uncheck Security.
What is programmed when | click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have
configured (such as sNVM or Security) are enabled for programming by default.

When | click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must

generate them from Export Bitstream for field updates.

Note: Once security is programmed, you must erase the security before attempting to reprogram the
security.

98

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

How do | generate encrypted programming files with User Encryption Key 1/2?

e Configure the Security Wizard and specify User Key Set 1, User Key Set 2. Ensure the Security
programming feature is enabled in Configure Bitstream; it is enabled by default once you configure the
Security Policy Manager.

e Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/spi/dat),
<filename>_uek?2.(stp/spi/dat) files are encrypted with UEK1, UEK2,respectively. See Security
Programming File Descriptions below for more information on programming files.

What are Security Programming Files?
See the Security Programming Files topic for more information.

Program Design

Configure Bitstream

Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the
Configure Bitstream dialog box.

The Configure Bitstream dialog box enables you to select which components you wish to program. Only
features that have been added to your design are available for programming. For example, you cannot
select eNVM for programming if you do not have sNVM in your design.

If the design includes uPROM, it will be included in the Fabric.

® | Configure Bitstream &

Program

V| Custom security

| Fabric
V| sNvM
Help ‘ [OK] ‘ Cancel

Figure 68 - Configure Bitstream Dialog Box - PolarFire

Selected components - Updates the components you select, regardless of whether or not they have
changed since your last programming.

Notes:
e Custom security is enabled if security was configured.
e sNVM is enabled if SNVM was configured with clients to program.
e All available features are selected by default.

99

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

See Also
Note: "Generate Bitstream " on page 100

Generate Bitstream
Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, SNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file. You need to configure the bitstream before you generate the
bitstream. Right-click Generate Bitstream and choose Configure Options to open the Configure Bitstream
dialog box to select which components you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select SNVM for programming if you do not
have an sNVM in your design.

If the design includes UPROM, it will be included in the Fabric.
Maodifications to the Fabric design, SNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.

When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

— e g ermE s

- 5
v J5 Place and Route
i E- ¢ Verify Post Layout Implementation
-- # Program and Debug Design
v . +L| Generate FPGA Array Data
*L| Configure Design Initialization Data and Memories
v -+ | Generate Design Initialization Data
#- » Configure Hardware
-,, Configure Programming Options
& Configure Security
i E ¢ Program Design

i@ Run PROGRAM Action
Figure 69 - Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Run PROGRAM Action

If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.

If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).

Right-click Run PROGRAM Action and choose Configure Action/Procedures to open the Select Action
and Procedures dialog box.

Programming File Actions
Libero SoC enables you to program security settings, FPGA Array, and sNVM features.
Note: If the design includes UPROM, it will be included in the Fabric.

You can program these features separately using different programming files or you can combine them into
one programming file.

In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click
Configure Actions/Procedures.

100

PolarFire Design Flow User Guide c Mfcrose’nl

Power Matters.”
r , s |
| Select Action and Procedures u

Action:

| PROGRAM v

Procedures:

VERIFY_IDCODE i
PROC_ENABLE \
DO_PROGRAM i

| DO_VERIFY '
DO_EXIT

Help | i OK i | Cancel

Figure 70 - Select Actions and Procedures
Left-click on the Action: picklist to select from the following actions:

Action:

DEVICE_INFO
ENC_DATA_AUTHENTICATION
ERASE

READ_IDCODE
VERIFY
VER]F‘I":[}IGEST

Figure 71 - Action Choices
The following table lists programming file actions and supported procedures.

Table 1 - Programming File Actions and Supported Procedures

Action Procedures

DEVICE_INFO VERIFY_IDCODE
DO_DEVICE_INFO
DO_EXIT

ENC_DATA_AUTHENTICATION VERIFY_IDCODE
DO_AUTHENTICATION
DO_EXIT

101

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Action

Procedures

ERASE

VERIFY_IDCODE
PROC_ENABLE
DO ERASE
DO_EXIT

PROGRAM

VERIFY_IDCODE
PROC_ENABLE
DO_PROGRAM
DO_VERIFY
DO_EXIT

READ_IDCODE

VERIFY_IDCODE
PRINT_IDCODE
DO_EXIT

VERIFY

VERIFY_IDCODE
PROC_ENABLE
DO_VERIFY
DO_EXIT

VERIFY_DIGEST

VERIFY_IDCODE
PROC_ENABLE
DO_VERIFY_DIGEST
DO_EXIT

The table below lists programming file actions and descriptions.

Table 2 - Programming File Actions

Action Description
PROGRAM Programs all selected family features: FPGA Array, targeted sSNVM
clients, and security settings.
ERASE Erases the selected family features: FPGA Array and Security

settings.

VERIFY_DIGEST

Calculates the digests for the components (Custom Security,
Fabric, or sSNVM) included in the bitstream and compares them
against the programmed values.

VERIFY

Verifies all selected family features: FPGA Array, targeted SNVM
clients, and security settings.

ENC_DATA_AUTHENTICATION

Encrypted bitstream authentication data.

READ_IDCODE

Reads the device ID code from the device.

DEVICE_INFO

Displays the IDCODE, the design name, the checksum, and device
security settings and programming environment information
programmed into the device.

102

PolarFire Design Flow User Guide

Options Available in Programming Actions

& Microsemi

Power Matters.”

The table below shows the options available for specific programming actions.

Table 3 - Programming File Actions - Options

Action

Option and Description

PROGRAM

DO_VERIFY - Enables or disables programming verification

VERIFY_DIGEST

DO_ENABLE_FABRIC - Includes Fabric and Fabric configuration in the

digest check

DO_ENABLE_SNVM - Includes the sNVM in the digest check

DO_ENABLE_SECURITY - Includes security policy settings and UPK1
security segments in the digest check

DO_ENABLE_UEKT1 - Includes UEK1 in the digest check

DO_ENABLE_UKS2 - Includes User Key Set 2 (UPK2 and UEK?2) security

segment in the digest check

DO_ENABLE_DPK - Includes DPK security segment in the digest check

DO_ENABLE_SMK - Includes the SMK security segment in the digest
check

DO_ENABLE_USER_PUBLIC_KEY — Includes the User Public Key
security segment in the digest check

Exit Codes (PolarFire)

Error Exit Message Exit Possible Cause Possible Solution
Code Code
Passed (no error) 0 - -
0x8002 | Failed to disable 5 Unstable voltage level Monitor related power supplies that cause the
programming mode issue during programming; check for transients
Signal integrity issues on outside of Microsemi specifications. See your
Failed to set programming JTAG pins device datasheet for more information on
mode transient specifications.
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8032 | Device is busy 5 Unstable VDDIx voltage Monitor related power supplies that cause the
level issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.
0x8003 | Failed to enter 5 Unstable voltage level Monitor related power supplies that cause the
programming mode issue during programming; check for transients
Signal integrity issues on outside of Microsemi specifications. See your

103

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

segment digest
verification: FAIL

Deselect procedure
'DO_ENABLE_SECURITY
' to remove this digest
check.

Error Exit Message Exit Possible Cause Possible Solution
Code Code
JTAG pins device datasheet for more information on
transient specifications.
DEVRST_N is tied to LOW
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
Tie DEVRST_N to HIGH prior to programming
the device.
0x8004 | Failed to verify IDCODE 6 Incorrect programming file | Choose the correct programming file and select
the correct device in the chain.
Incorrect device in chain
Measure JTAG pins and noise for reflection. If
Signal integrity issues on TRST is left floating then add pull-up to pin.
JTAG pins
Reduce the length of Ground connection.
0x8005 | Failed to verify FPGA 11 Device is programmed with | Verify the device is programmed with the correct
0x8006 | Array a different design or the data/design.
0x8007 component is blank.
0x8008 | Failed to verify Fabric Monitor related power supplies that cause the
Configuration Unstable voltage level. issue during programming; check for transients
outside of Microsemi specifications. See your
Failed to verify Security Signal integrity issues on device datasheet for more information on
JTAG pins. transient specifications.
Failed to verify SNVM
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8013 | External digest check via | -18 External Digest check via | Need to use a bitstream file which has a valid
JTAG/SPI Slave is JTAG/SPI Slave is FlashLock/UPK1 to enable external digest check
disabled. disabled. via JTAG/SPI Slave.
0x8015 | FPGA Fabric digest -20 FPGA Fabric is either If the Fabric is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_FABRIC" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_FABRIC' to
remove this digest check.
0x8016 | sSNVM digest verification: -20 sNVM is either erased or If the SNVM is erased, deselect procedure
FAIL the data has been "DO_ENABLE_SNVM" from action
corrupted or tampered with | "VERIFY_DIGEST"
Deselect procedure
'DO_ENABLE_SNVM' to
remove this digest check.
0x8018 | User security policices -20 Security segment is either | If the security is erased, deselect procedure

erased or the data has
been corrupted or
tampered with

"DO_ENABLE_SECURITY" from action
"VERIFY_DIGEST"

104

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

verification: FAIL

Error Exit Message Exit Possible Cause Possible Solution
Code Code
0x8019 | UPK1 segment digest -20 UPK1 segment is either If the UPK1 is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_SECURITY" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_SECURITY
' to remove this digest
check.
0x801A | UPK2 segment digest -20 UPK2 segment is either If the UPK2 is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_UKS2" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_UKS2' to
remove this digest check.
0x801B | Factory row and factory -20 Factory row and factory
key segment digest key segment have been
verification: FAIL erased through zeroization
or the data has been
corrupted or tampered with
0x801C | Fabric configuration -20 Fabric configuration If the Fabric configuration is erased, deselect
segment digest segment is either erased procedure "DO_ENABLE_FABRIC" from action
verification: FAIL or has been corrupted or "VERIFY_DIGEST"
tampered with
Deselect procedure
'DO_ENABLE_FABRIC' to
remove this digest check.
0x8052 | UEK1 segment digest -20 UEK1 segment is either If the UEK1 is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_UEK1" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_UEKL' to
remove this digest check.
0x8053 | UEK2 segment digest -20 UEK2 segment is either If the UEK2 is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_UEK?2" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_UEK2' to
remove this digest check.
0x8054 | DPK segment digest -20 DPK segment is either If the DPK is erased, deselect procedure
verification: FAIL erased or the data has "DO_ENABLE_DPK" from action
been corrupted or "VERIFY_DIGEST"
Deselect procedure tampered with
'DO_ENABLE_DPK' to
remove this digest check.
0x8057 | SMK segment digest -20 SMK segment is either If the SMK is erased, deselect procedure

erased or the data has
been corrupted or
tampered with

"DO_ENABLE_SMK" from action
"VERIFY_DIGEST"

105

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Incorrect DEVICEID

Error Exit Message Exit Possible Cause Possible Solution
Code Code
0x8058 | User Public Key segment | -20 User Public Key segment | If the User Public Key is erased, deselect
digest verification: FAIL is either erased or the data | procedure "DO_ENABLE_USER_PUBLIC_KEY"
has been corrupted or from action "VERIFY_DIGEST"
tampered with
0x801D | Device security prevented |-21 The device is protected Run DEVICE_INFO to view security features
operation with user pass key 1 and that are protected.
the bitstream file does not
contain user pass key 1. Provide a bitstream file with a user pass key 1
that matches the user pass key 1 programmed
User pass key 1 in the into the device.
bitstream file does not
match the device.
0x801F | Programming Error. -22 Bitstream file has been Regenerate bitstream file
corrupted or was
Bitstream or data is incorrectly generated. Monitor related power supplies that cause the
corrupted or noisy issue during programming; check for transients
Unstable voltage level. outside of Microsemi specifications. See your
device datasheet for more information on
Signal integrity issues on transient specifications.
JTAG pins. Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8021 | Programming Error. -23 File contains an encrypted | Provide a programming file with an encryption
key that does not match key that matches that on the device
Invalid/Corrupted the device
encryption key First program security with master programming
File contains user file, then program with user encryption 1/2 field
encryption key, but device | update programming files
has not been programmed
with the user encryption
key
0x8023 | Programming Error. -24 Design version is not Generate a programming file with a design
higher than the back-level | version higher than the back level version
Back level not satisfied programmed device
0x8001 | Failure to read DSN -24 Device is in System TRSTB should be driven High or disable
Controller Suspend Mode | "System Controller Suspend Mode".
Check board connections
0x8027 | Programming Error. -26 Device does not support Generate a programming file with the correct
the capabilities specified in | capabilities for the target device
Insufficient device programming file
capabilities
0x8029 | Programming Error. -27 Incorrect programming file | Choose the correct programming file and select

Incorrect device in chain

Signal integrity issues on
JTAG pins

the correct device in chain

Measure JTAG pins and noise or reflection. If
TRST is left floating, then add pull-up to pin

106

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

action is disabled

Error Exit Message Exit Possible Cause Possible Solution
Code Code
Reduce the length of ground connection
0x802B | Programming Error. -28 Programming file version is | Generate programming file with latest version of
out of date Libero SoC
Programming file is out of
date, please regenerate.
0x8030 | Programming Error -31 FAB_RESET_N is tied to FAB_RESET_N should be tied to HIGH
ground
Invalid or inaccessible
Device Certificate
0x8032 | Instruction timed out -32 Unstable voltage level Monitor related power supplies that cause the
0x8034 issue during programming; check for transients
0x8036 Signal integrity issues on outside of Microsemi specifications. See your
0x8038 JTAG pins device datasheet for more information on
transient specifications.
Monitor JTAG supply pins during programming;
measure JTAG signals for noise or reflection.
0x8010 | Failed to unlock user pass | -35 Pass key in file does not Provide a programming file with a pass key that
key 1 match device matches pass key programmed into the device.
0x8011 | Failed to unlock user pass | -35 Pass key in file does not Provide a programming file with a pass key that
key 2 match device matches pass key programmed into the device.
0x804F | Bitstream programming -38 Unstable voltage level Monitor related power supplies that cause the

Bitstream programming
action has been disabled
in Security Policy Manager

issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Need to use a bitsream file which has a valid
FlashLock/UPKZ1 to enable the bitstream
programming action.

Program SPI Flash Image

Generate SPI Flash Image
This tool generates the <design>_spi_flash.bin file in the implementation folder.

To run this tool; under the Program SPI Flash Image, right-click Generate SPI Flash Image and choose

Run.

107

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

4 ¢ Program SPI Flash Image ‘

v B Generate 5Pl Flash Image —
@ Run PROGRAM_SPL_FLASH Action Run
4 p Debug Design Clean and Run All
€ SmartDebug Design Clean

4 p Configure Permanent Locks for Production Help
@ Configure OTP Security T
This tool depends on the Configure Design Initialization Data and Memories tool and the Generate Design
Initialization Data tool. When running, the tool verifies that the SPI Flash configuration data is saved and
valid; and that the SPI Flash initialization client was generated successfully (if required).

Run PROGRAM_SPI_FLASH Action

This tool allows the user to program the SPI Flash device connected to the PolarFire device through the
JTAG programming interface. Currently, only the Micron 1Gb SPI flash is supported, and is included with the
Evaluation Kit. This feature minimizes cost by not requiring a mux and external SPI pins on the board for SPI
flash programming by another tool. This tool always erases the entire SPI flash prior to programming.
Programming starts at address 0 of the SPI flash until the last client. Any gaps in the SPI flash are
programmed with all 1's. Future versions of the software will allow the user to add Data Storage clients to
program user data and will also provide the ability to partially update the SPI flash.

Note: This version of the programmer does not support SPI Flash security. Device security options such
as "Hardware Write Protect” should be disabled for the External SPI Flash device.

VD DDx (x = JTAG/DEDIO Banrk Mumber)

FolarFire FPGA External
SPI Flash

System Controller

CS

83

Yy

faz =
sr X
500 50 ==0.1 yF
=01 » s

ITAG =

Host PO with
SPF] Flash Binary Fis

Note: The SPI pins are controlled by the Boundary Scan Register one bit at a time.
Figure 72 - SPI Flash Programming with PolarFire Device

The following table provides the expectations of programming the SPI flash with a FP5 programmer. Future
programmers are planned, and should greatly improve programming times. All times are in hh:mm:ss.

SPI Size | ERASE PROGRAM VERIFY/READ TCK Programmer
1MB 3:55 00:00:45 00:10:46 4MHz FP5
1 MB 3:55 00:00:28 00:10:05 15MHz FP5
9 MB 3:55 00:06:38 01:19:15 4MHz | FP5
9 MB 3:55 00:04:26 01:08:49 10MHz FP5
18 MB 3:55 00:09:04 02:32:43 10MHz FP5

108

PolarFire Design Flow User Guide

& Microsemi

SPI Size

ERASE

PROGRAM

VERIFY/READ TCK

Programmer

128 MB

3:55

00:58:38

22:07:55 15MHz

FP5

Recommendations:

Power Matters.”

1. Since the verify time is currently not optimized, it is recommended to authenticate the SPI bitstreams
with system services for quicker verification.

2. Since this tool erases the SPI flash prior to programming and currently does not support Data Storage
clients for user data, it is recommended to program the SPI flash with Libero prior to programming
other data on the SPI flash.

3. Since programming time is currently not optimized, it is recommended to not have huge gaps between
clients in the SPI flash, since gaps are currently programmed with 1's.

If SPI Flash is configured, you can execute Run PROGRAM_SPI_FLASH Action and select SPI Flash
Image actions and procedures.

In the Design Flow window, under Program SPI Flash Image, right-click Run PROGRAM_SPI_Flash
Action and choose Configure Action/Procedures.

4 ¥ Program and Debug Design

+[| Generate FPGA Array Data

*_| Configure Design Initialization Data and Memories
+[| Generate Design Initialization Data

v
4

9

9

9

]

b Configure Hardware

I* Programming Connectivity and Interface
&\ Configure Programmer

ies; Device /O States During Programming - JTAG Mode Only

» Configure Programming Options
@ Configure Security
» Program Design

% Generate Bitstream

‘5 Run PROGRAM Action
» Program 5PI Flash Image
% Generate 5PI Flash Image

m

[z Run PROGRAM_SPI FLAS

¥ Debug Design

€ SmartDebug Design

Run
Clean and Run All

4 p Configure Permanent Locks fDl% Clean

@ Configure OTP Security
4 » Handoff Design for Production |

% Export Bitstream

-@ Export FlashPro Express Job !
-@ Export SPI Flash Image

#[| Fxnnrt Din Rennrt

Help

Configure Action/Procedures...

-

Note: In this release, SPI Flash programming is supported for MICRON devices only.

See Configure SPI Flash Image Actions and Procedures for information about supported actions and

procedures.

109

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Configure SPI Flash Image Actions and Procedures

If SPI Flash is configured, you can select supported SPI Flash Image actions and procedures in the Select
Action and Procedures dialog box. See the following example.

o)

| | Select Action and Procedures

Action:

| PROGRAM_SPI_IMAGE - |

Procedures:

VERIFY_DEVICE_ID
ERASE_DIE

PROGRAM_IMAGE

o][o

Figure 73 - Select Action and Procedures Dialog Box
The following table lists the actions and procedures for the Run PROGRAM_SPI_Flash tool.

Action Mandatory Description
Procedures

PROGRAM_SPI_IMAGE | VERIFY_DEVICE_ID | This action will erase the entire SPI flash then
ERASE_DIE program the SPI image.
PROGRAM_IMAGE

VERIFY_SPI_IMAGE VERIFY_DEVICE_ID [This action verifies the SPI Image on the SPI Flash.
VERIFY_IMAGE

READ_SPI_IMAGE VERIFY_DEVICE_ID | This action reads the SPI Image from the SPI Flash.
READ_IMAGE

ERASE_SPI_FLASH VERIFY_DEVICE_ID [This action erases the entire SPI Flash.
ERASE_DIE

Note: If the device ID does not match when running any action, the action will fail.

110

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Debug Design

Identify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.

Identify features:
e Instrument and debug your FPGA directly from RTL source code .
¢ Internal design visibility at full speed.

¢ Incremental iteration - Design changes are made to the device from the Identify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

e Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify Instrumentor and Debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.

2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a
Programming File) without starting Identify.

Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
In Synplify, click Options > Configure Identify Launch to setup Identify.
In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

In the Implementations Options dialog, make sure the Implementation Results > Results Directory
points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file.

7. From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

8. InLibero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

o gk w

9. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

SmartDebug

Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug can provide
access to Microsemi FPGA device's built-in probe logic, which enables designers to check the state of inputs
and outputs in real-time without re-layout of the design.

SmartDebug can be run in two modes:
e Integrated mode from the Libero Design Flow
e Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug
FPGA Array.

111

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

PolarFire Design Flow User Guide Q Micmsemi,

See Also

Power Matters.”

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click
SmartDebug Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job
Manager. This provides a lean installation that includes all the programming and debug tools to be installed
in a lab environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow.
Prior to launch of SmartDebug standalone mode, you must to go through SmartDebug project creation and
import a Design Debug Data Container (DDC) file, exported from Libero, to access all debug features in the
supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified 1/0.

SmartDebug User Guide

112

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_smartdebug_ug.pdf

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

Handoff Design for Production

Export Bitstream

Export Bitstream Files enables you to export STAPL, DAT, and SPI programming files.

To export a bitstream file
1. Under Handoff Design for Production, double-click Export Bitstream. The Export Bitstream dialog box
opens. The dialog box options depend on your Security Policy Wizard settings:
e Bitstream Encryption with the Default Key in the Security Policy Wizard
e Enable Custom Security Options in the Security Policy Wizard
2. Choose your options, such as DAT file if you wish to include support for Embedded ISP, or SPI file if
you need support for IAP.
3. Select the bitstream components (Fabric/sNVM) that you want to program.
4. Enter your Bitstream file name and click OK to export the selected bitstream files.

See Also
Digest File

Bitstream Encryption with Default Key in the Security Policy wizard
See the Export Bitstream topic for more information on exporting your bitstream.

8| Export Bitstream - &
[S . - :
Bitstream file
Hame: sdl Existing files:
Location: EX\designs\juno_tesS\designersdl\eport =l sd1_secured_uekl.spi
=l sd1_security_only_mastecspi
Formats: = sdl_security_only_masterstp
| STAPL Support for ISP
DAT Suppart fior Embedded ISP (JTAG and SPI-Sleve)
spt Suppart for Auto Programming, Aute Update,
and IAP Services
Selected Security optiens (Configure Security tool)
Encrypt bitstream with default key. Mo user keys or sacurity settings are enabbed.
FlashLock/UPK1 will be exported in Plaintext (master file).
Bitgtream files to be exported
Bitstream Components
File to program at trusted facility | Fabric] sHVM
Help T o Cancel

Figure 74 - Export Bitstream Dialog Box with Default Key
Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your
top-level design.
Existing bitstream files - Lists bitstream files you created already.

Bitstream File Formats:
Select the Bitstream File format you want to export:

e STAPL file
o DAT file
e SPlIfile

113

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

Selected Security options (modify via "Configure Security Wizard " on page 91 — Gives a brief description
of current security options.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

File to program at trusted facility — Click to include Fabric and/or SNVM into the bitstream files to be
programmed at a trusted facility.

Note: Only features that have been added to your design are available for programming. For example, you
cannot select sNVM for programming if you do not have an sNVM in your design.

Enable Custom Security Options in the Security Policy wizard

See the Export Bitstream topic for information on exporting your bitstream.
8 Export Bitstream &

Bitstream file
Mame: sdi Exsting files:

= i
[Ry m——p—— 1 sd1_secured_uekl.spi
| . : =l sd1_security_only_masterspi

Formats: =l sd1_security_only_mastetstp
| STAFL Suppart for ISP

N DAT Suppart for Embedded ISP (JTAG and SP1-5lave)

|

[l ST Suppart for Auto Programming, Auto Update,

and IAP Services

il Selected Security options (Configure Sacurity tool)

Disable all factory key modes and configured security settings.

Use FlashLock/UPK1 to temporarily enable settings during one programming/debugging session.
| FlashLock/UPK1 will be exported in Plaintext (master file).

| Auto Programming and 1AF Services are disabled for update.

[SmanDebug socess control is enabled. Internal data may be accessible, Anyone can debug or Bcoess active probes, sccess Live Probe, and read the content of sHVM,
Factory Test Mode is allowed. This will allew Micresemi to perform Failure Analysis. This is not recommended for production devices.
& Zeroization through JTAG/SPI Slave is enabled. This is not recommended for production devices.
il External Fabric/siWM design digest check request through TTAG/SFI Slave ts enablad.
Repeated external Fabric digest calculations can impact its reliability. View Datasheet for additonal information.

| Bitstream files to be exported

Ul Bitstream components
Master file to program at trusted facility Ustom security ~ | Fabric | SNVM
File encrypted with UEK1 to program at untrusted facility of for Broadcast field update | Fabric o VM
File encrypted with UEK2 to program at untrusted facility or for Broadcast field update | Fabric | shivM
|
|
Help] | oK | Cancel

Figure 75 - Export Bitstream Dialog Box with Enable Custom Security Options in the Security Policy Wizard

Bitstream file - Sets the name of your bitstream file. The prefix varies depending on the name of your top-
level design.

Existing files: - Lists bitstream files you created already.
Formats:
Select the Bitstream file format you want to export:

e STAPL file
o DAT file
e SPIfile

Selected Security options (modify via "Configure Security Wizard " on page 91) — Gives a brief
description of current security options.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

Note: If a component (for example, SNVM) is not present in design then it will be disabled in the bitstream
component selection.

Master file to program at trusted facility — Click to include Fabric and/or sNVM into the bitsream files to
be programmed at a trusted facility. Note that Security is always programmed in Master file.

114

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update — Click to
include Fabric and/or sSNVM into the bitsream files to be programmed. If the selected features are not
protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK1
that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include Fabric and/or sSNVM into the bitsream files to be programmed. If the selected features are not
protected by UPKZ1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK2
that is preprogrammed into the device.

Note: If the sSNVM/Fabric is protected with UPK1 and included in the bitstream, UPK1 will be added to the
STAPL and DAT file, and cannot be used at untrusted location.

Note: If sSNVM/Fabric is One Time Programmable, it precluded from bitstream encrypted with UEK1/2.

Security Programming Files

Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following
files:

<filename>_master.(stp/spi/dat) - Created when Enable custom security options is specified in the
Security Wizard. This is the master programming file; it includes all programming features enabled, User
Key Set 1, User Key Set 2 (optionally if specified), and your security policy settings.
<filename>_security_only_master.(stp/spi/dat) — Created when Enable custom security options is
specified in the _Security Wizard. Master security programming file; includes User Key Set 1, User Key Set 2
(optionally if specified), and your security policy settings.

<filename>_uek1.(stp/spi/dat) — Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .

<filename>_uek?2.(stp/spi/dat) — Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.

Export FlashPro Express Job

For PolarFire, Security Programming is supported. Use the Configure Security Wizard to configure Security
before you export the programming job. The Export FlashPro Express Job dialog box displays the Security
Options you have configured in the Configure Security Wizard.

The Export FlashPro Express Job dialog box options vary depending on the Security Key Mode you select.

115

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”

Select Bitstream Encryption with Default Key in the Configure Security Wizard

B Export FlashPro Express Job

FlashPro Express Job file
Mame: prepl

Location: D:\pf_prepi\designer\prep1\export E
Existing files:

<MNo FlashPro Express Job files found=

Selected Security options (Configure Security tool)
Encrypt bitstream with default key. No user keys or security settings are enabled.
FlashLodk/UPK 1 will be exported in plaintext (master file).

Design bitstream file to be induded in the programming job
Bitstream components

File to program at trusted facility Fabric SNYM

Configured device chain with bitsiream fes and programmer settings wil be inoided in the programming job.

) (e

Figure 76 - Export FlashPro Express Job Dialog Box

Programming job file

Name - All names use a prefix as shown in your software.

Location - Location of the file to be exported.

Existing programming job files - Lists any existing programming job files already in your project.
Selected Security Level (Modify via Configure Security Wizard) - Gives a brief description of current
security options.

Design bitstream file to be included in the programming job - Lists all the available bitstream files, one
of which will be included in the programming job for the current target device.

File to program at trusted facility -Click to enable programming for Fabric and/or SNVM bitstream
components at a trusted facility.

116

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

Enable Custom Security Options in the Configure Security Wizard

" | Export FlashPro Express Job @
FlashPro Express Job file
Mamsw: bop
Location: E:\SHWVM_TEST _MEW_1\designeritopiexport
Existing files:

= top_chainjob

Selected Secwrity options (Configure Security tool)

Disable all factory bey modes and configured securfty seflings.

Use FlashLock/UPK1 to besnporarily ensble settings during cne programmingdebuggng sesson.

FlashLock/UPKL wall be exported in plaintext (master fils).
SenarDebig Sivess cantrol (9 enabled. Internal dats may be posessible. Amyahe can delug oF SEoess bctive probes, actess Lve Probe, and resd the comtent of shivel
Factory test mode ks allowsed. This will allow Microsemd to perform Failure Analysis. This is not recommended for production devices.

_"J, Zeropakion throwgh JTTAGISPL Slave 15 enabled. Ths s not recomenandsd for producticn devices
Exbérnal Fabric/ sV design digest check request through JTAG/SPT Slinve is enabled,
Repested exbernal Fabric digest calculations can impact s relability. View Datashaef fer additional infermation.

Design btstream file to be inchaded in the programming job
Bitstream coenponents

@ Mastier file to prograen ot irushed faclity 2 | Fabric | sV
File encrypted with UEKL ty program st ustrusted facility or for Broadcast field update
Filg ancrypbed with UEKZ to program at entrusted facility or for Broadcast figld vpdate

e chaiy T Birstrea files and programmer semings Wil be indluded in the programming jod.

Help | oK Cancel

Figure 77 - Export FlashPro Express Job Dialog Box - Enable Custom Security Options
Programming job file name - All names use a prefix as shown in your software.
Existing programming job files - Lists any existing programming job files already in your project.

Selected Security Level (Modify via Configure Security Wizard) - Gives a brief description of current
security options.

Design bitstream file to be included in the programming job - Lists all the available bitstream files, one
of which will be included in the programming job for the current target device.

Master file to program at trusted facility - Click to include Fabric and/or SNVM into the bitstream files to
be programmed at a trusted facility. Note that Security is always programmed in Master file.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update - Click to
include Fabric and/or SNVM into the bitstream files to be programmed. If the selected components are not
protected by UPK1, the bitstream can be programmed at an untrusted location, since it is encrypted with
UEK1 that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include Fabric and/or SNVM into the bitstream files to be programmed. If the selected components are not
protected by UPK1, the bitstream can be programmed at an untrusted location, since it is encrypted with
UEK?2 that is preprogrammed into the device.

Prepare Design for Production Programming in FlashPro Express

After you have exported a programming job you can handoff this programming job to the FlashPro Express
tool for production programming. To do so:

In FlashPro Express, from the File menu choose Create Job Project From a Programming Job. You will
be prompted to specify the Programming Job location that you just exported from Libero and the location of
where to store the Job Project. The Job Project name automatically uses the programming job name and
cannot be changed. Click OK and a new Job Project will be created and opened for production
programming.

117

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Export SPI Flash Image

Name

Location

This tool depends on the “Configure Design Initialization Data and Memories” tool. The SPI Flash
configuration can be exported to a binary file. Use this dialog to export a SPI Flash Image file.

.| Export SPI Flash Image @

SPI Flash Image file

Mame: muxd
Location: D:\2Workljunk_projinewpf\designerimuxs\export E]
Existing files:

muxd.bin

s

OK] [Cancel

Figure 78 - Export SPI Flash Image

This is the top level design nhame by default. Use this field to change the default name. SPI Flash Image files
are exported in binary format and have the *.bin file extension and are named <design_name>.bin.

The default location for the exported image file is <project_folder>\designer\<top_level_design>\export. Use
the browse button to navigate to and specify a different location for the exported SPI Flash Image file.

Existing files

See Also

Existing SPI Flash Image files are listed.

Tcl command "export_spiflash_image" on page 148
PolarFire FPGA Programming User Guide

Export Pin Report

In the Design Flow window, expand Handoff Design for Production. Right-click Export Pin Report to export a
pin report.

The Export Pin Reports Dialog Box opens. Click the Browse Button to navigate to a disk location where you
want the pin report to be saved to.

Check the checkbox to make your selections:
e Pin Report sorted by Port Name
e Pin Report sorted by Package Pin Name
e |/O Bank Report
e |/O Register Combining Report

The Pin Report lists the pins in your device sorted according to your preference: sort by Port Name or
Sorted by Package Pin Name. The Pin Report generates two files:

e <design>_pinrpt_name.rpt - Pin report sorted by name.
e <design>_pinrpt_number.rpt - Pin report sorted by pin number.

118

https://www.microsemi.com/document-portal/doc_download/136523-ug0714-polarfire-fpga-programming-user-guide

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

You must select at least one report.

Export Pin Report generates a Bank Report by default; the filename is <design>-bankrpt.rpt. Export Pin
Report also generates an 1/0 Register Combining Report listing the 1/0Os which have been combined into a
Register for betting timing performance.

| Export Pin Reports @Iﬂ—hj
Location: D:\2Work\dsfada'\designer\count 16| Browse...

Fin Report Sorted by Port Mame

[¥] Fin Report Sorted by Package Fin Name
[¥] 1f0 Bank Report

[¥] 1/ Register Combining Report

oK] [Cancel

Figure 79 - Export Pin Report Dialog Box

Export BSDL File

Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Report.

The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary
scan device package, pin description and boundary scan cell of the input and output pins. BSDL models are
available as downloads for many Microsemi SoC devices.

See the Microsemi website for more information on BSDL Models.

119

https://www.microsemi.com/products/fpga-soc/design-resources/bsdl-models

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Export SmartDebug Data (Libero SoC)

Export SmartDebug Data allows the export of SmartDebug Data from Libero to be handed off to the
standalone SmartDebug environment.

In the Libero SoC Design Flow window, expand Handoff Design for Debugging, right-click Export
SmartDebug Data and click Export to open the Export SmartDebug Data dialog box. Specify the design
debug data file (*.ddc)) to be exported. This file is also used as one of the ways to create a standalone
SmartDebug project.

See the following figure for an example.
=] Export SmartDebug Data x

Design debug data file

Name: countle

Lecation: |another_eapda/designer/countls/export][l

Existing design debug data files:

=No SmartDebug data files found=

Include design components
¥ FPGA Array Probe Points
¥ FPGA Array Memory Blocks
¥ |JTAG Chain
¥| Programmer Settings

¥ Device /O States During Programming

¥ Include bitstream file to program at trusted facility

Bitstream components: |« Fabric eNVM

=

Figure 80 - Export SmartDebug Data Dialog Box
Note: SmartDebug data can be exported without connecting the hardware.
Design debug data file (*.ddc)
Name
The name of the design.
Location

& |

120

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

The location of the exported debug file. By default, the *.ddc file is exported to the
<project_location>/designer/<design>/export folder and has the *.ddc file extension.

Existing Design Debug Data Files
The existing *.ddc file, if any, in the export folder.

SmartDebug data can be exported after you run Generate FPGA Array Data for the design in the Libero
Design Flow. You can also directly export SmartDebug data after running Synthesize on the design. Other
tools, such as Place and Route, Generate FPGA Array Data, and so forth) are implicitly run before the
Export SmartDebug Data dialog box is displayed.

Include desigh components
A DDC file can contain the following components:

e FPGA Array Probe Points — When checked, Libero SoC exports Live and Active probes information
(<design>_probe.db file) into the *.ddb container file.

e FPGA Array Memory Blocks — When checked, Libero SoC exports information about FPGA
memories (<design>_sii_block.db) into the *.ddb container file:

¢ names and addresses of the memory blocks instantiated by the design
e data formats selected by the user in the design

e Security — This contains the security locks, keys, and security policy information needed for debug.
This may be default or custom security (<design>.spm file). It is hidden if security is not supported for
the device.

e JTAG Chain (device chain information configured using Programming Connectivity and Interface in
Libero) — When checked, Libero SoC exports chain data including devices, their programming files if
loaded, device properties, and so on (<design>.pro file). If JTAG chain is uchecked, the default JTAG
chain with Libero design device only is added to the *.ddc file.

e Programmer Settings (<design>.pro file) — If Programmer Settings is unchecked, the default
programmer settings are added to the *.ddc file.

e Device I/O States During Programming (<design>.ios file) — This setting is used by some
SmartDebug features, for example, for programming sSNVM . It is NOT used during device
programming in SmartDebug; programming files used to program devices already have 1/O states
data.

In addition, you can include bitstream file information, which can be used for programming the device in
standalone SmartDebug.

Include Bitstream file to program at trusted facility
e Bitstream components: Fabric
e Bitstream components: SNVM
The default location of the DDC file is: <Libero_Project_directory>/designer/<design_name>/export.
The DDC file can be exported to any user-specified location if the location has read and write permission.

121

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

References

set_client

This Tcl command specifies the client that will be added to SPI Flash Memory. This command is added to
the SPI Flash Memory configuration file that is given as the parameter to the configure_spiflash command.

set _client \
-client_name {} \

-client_type {FILE_SPI1 | FILE_SPI_GOLDEN | FILE_SPI_UPDATE |FILE_DATA_STORAGE_INTELHEX
\

-content_type {MEMORY_FILE | STATIC_FILL} \

-content_file {} \

-start_address {} \

-client_size {} \

-program {0]1}

Arguments

-client_name
The name of the client. Maximum of 32 characters, letters or numbers or “-“ or “_".

-client_type

The -client_type can be FILE_SPI, FILE_SPI_GOLDEN, FILE_SP1_UPDATE or
FILE_DATA_ STORAGE_INTELHEX.

FILE_SPI — SPI Bitstream
FILE_SPI_GOLDEN — Recovery/Golden SPI Bitstream

FILE_SPI_UPDATE — Auto Update SPI Bitstream; available only if Auto Update is enabled. See
set_auto_update mode.

FILE_DATA_STORAGE_INTELHEX - Data Storage client
-content_type

The -content_type can be MEMORY_FILE or STATIC_FILL.

MEMORY_FILE — content_file parameter must be specified. See below.

STATIC_FILL — client memory will be filled with 1s; no content memory file
-content_file

Absolute or relative path to the content memory file.
-start_address

The client start address. Note that some space is reserved for the SPI Flash Memory directory. Note: This
is a decimal value of bytes.

-client_size

Client’s size in bytes. If a content file is specified, the size must be equal to or larger than the file size.
Note: this is a decimal value.

-program {1}
Note: Only program | 1 is supported in this release.

Examples
The following examples show the set_client Tcl command.

Absolute path

set_client \
-client_name {golden} \

122

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

-client_type {FILE_SPI_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {E:\top_design_ver_1.spi} \
-start_address {1024} \
-client_size {9508587} \
-program {1}

set_client \
-client_name {ds} \
—-client_type {FILE_DATA_STORAGE_INTELHEX} \
-content_type {MEMORY_FILE} \
-content_file {E:\intel_hex._hex} \
-start_address {9509611} \
-client_size {128} \
-program {1}

Relative path

set_client \
-client_name {golden} \
-client_type {FILE_SPI1_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {.\..\..\top _design_ver_1l.spi} \
-start_address {1024} \
-client_size {9508587} \
-program {1}
set_client \
-client_name {ds} \
-client_type {FILE_DATA_STORAGE_INTELHEX} \
-content_type {MEMORY_FILE} \
-content_file {.\..\..\intel_hex.hex} \
-start_address {9509611} \
-client_size {128} \
-program {1}

configure_uprom

Tcl command; configures uPROM from the specified configuration file.

configure_uprom -cfg_file file

Arguments
-cfg_file file
file is a valid configuration file to configure uPROM.

See Also

Configure uPROM

Sample uPROM Configuration File
set_data_storage_client \
-client_name {clientl_from_elsewhere} \
-number_of_words 37 \
-use_for_simulation {0} \
-content_type {MEMORY_FILE} \
-memory_file_format {Microsemi-Binary} \
-memory_file {C:/local_z_folder/work/memory files/sar_86586_uprom.mem} \
-base_address 1500
set_data_storage_client \

123

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

—-client_name {large_1} \
-number_of_words 100 \
-use_for_simulation {0} \
-content_type {STATIC_FILL} \
-base_address 5000

configure_spiflash

This Tcl command configures SPI Flash Memory from the specified SPI Flash Memory configuration file.

configure_spiflash -cfg_file file

Arguments
-cfg_File file
Specify a valid configuration file to configure SPI Fash.

file is the SPI Flash Memory configuration file. file can be an absolute path to the SPI Flash Memory
configuration file or it can be a path relative to a Tcl file that includes the command. After running this
command, the new configuration is saved as a project spiflash.cfg file.

See Also
Configure SPI Flash

Sample SPI Flash Configuration File
set_auto_update_mode {0}
set_manufacturer {Macronix}
set_client \
-client_name {vzcx} \
-client_type {FILE_SPI} \
-content_type {MEMORY_FILE} \
—content_file {..\.._..\..\memory Files\spi_bitstream.spi} \
-start_address {2561} \
-client_size {388} \
-program {1}
set_client \
-client_name {golden} \
-client_type {FILE_SPI1_GOLDEN} \
-content_type {MEMORY_FILE} \
-content_file {C:\local_z_folder\work\memory files\spi_bitstream.spi} \
-start_address {1042} \
-client_size {389} \
-program {1}
set_client \
-client_name {INIT_STAGE_3 SPI_CLIENT} \
-client_type {INIT} \
-content_type {MEMORY_FILE} \
-content_file {C:\local_z_folder\work\libero_projects\g5\SNVM_TEST_top_uic.bin} \
-start_address {4096} \
-client_size {4124} \
-program {1}

124

PolarFire Design Flow User Guide

Adding or Modifying Bus Interfaces in SmartDesign

& Microsemi

Power Matters.”

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
You can add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:
If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data,

and control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as

necessary.
3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto

Connect find a compatible connection.

To add (or modify) a bus interface to your Component:

1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box
opens, as shown in the figure below.

M Edit Core Definition - Bus Interfaces

HOL: FiiduddelamiprojectsiSarsis7ooeikl 1ihdihdl_plus.«

Module: test_hdl_plus

add Bus Interface... Remove
—Bus Interfaces on this core: — —Configure bus interface details:
BIF_1 Bus inkerface (APE): ﬂ |BIF_1
Map by Mame Prefix I
Bus Definition Caore
Signal I Dir | Req Signal
1 || [racor @ |um ~]
2 | [pseLx 3 |Mo j
5 | |FeEnsBLE L j
& || [PwRrTe g |Mo j
| [rroama B Mo j
& ([|Pwoara @ Mo j
| |FreADY B |Mo j
E PSLYERR B (Mo j
Help | [a]4 Cancel

Figure 81 - Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.

w

If necessary, edit the bus interface details.

4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar
signal names between the bus definition and pin names on the instance. During mapping, bus
definition signal names are prefixed with text entered in the Map by Name Prefix field.

125

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

5. Click OK to continue.

Bus Interface Details

Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).

Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.

Configuration Parameters

Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.

Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter.
If the bus interface has a different value for any parameters that are marked with consistent set to yes, this
bus interface will not be connectable.

Signal Map Definition

Catalog

The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This
information includes the name, direction and required properties of the signal.

The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .

If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface
to be considered legal. If it is No, you can leave it unmapped.

In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

Catalog

Namea ", |
Bus Interfaces

Clock & Management
D5P

+ Yo

Macro Library
Memory & Controllers
Peripherals

PolarFire Features

+ Processors

+ User Defined

- + = -

b

Figure 82 - Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or
peripheral, add a bus interface to your SmartDesign component, instantiate simulation cores or add a macro
(Arithmetic, Basic Block, etc.) to your SmartDesign component.

Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.

Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench.
Simulation cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

126

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Viewing Cores in the Catalog
The font indicates the status of the core:
¢ Plain text - In vault and available for use
e Asterisk after name (*) - Newer version of the core (VLN) available for download
e ltalics - Core is available for download but not in your vault
o Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:
Green Key - Fully licensed; supports the entire design flow.
Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.
Yellow Key with Red Circle - License is protected; you are not licensed to use this core.
Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to
open the core generator.
Click the Name column heading to sort the cores alphabetically.
You can filter the cores according to the data in the Name and Description fields. Type the data into the filter
field to view the cores that match the filter. You may find it helpful to set the Display setting in the Catalog
Options to List cores alphabetically when using the filters to search for cores. By default the filter contains
a beginning and ending ', so if you type ‘controller’ you get all cores with controller in the core name (case
insensitive search) or in the core description. For example, to list all the Accumulator cores, in the filter field

type:
accu

Catalog Options

Click the Options button " (or the drop-down arrow next to it) to import a core, reload the Catalog, or
modify the Catalog Options.
You may want to import a core from a file when:

¢ You do not have access to the internet and cannot download the core, or

e A core is not complete and has not been posted to the web (you have an evaluation core)

Catalog Options Dialog Box

The Catalog Options dialog box (as shown below) enables you to customize your Catalog. You can add a
repository, set the location of your vault, and change the View Settings for the Catalog. To display this dialog

box, click the Catalog Options button .

+.- Options ﬂm
[Yault/Repasitaries Settings I add
P m Repositaries
- Mault location vy, ackel-ip, comfrepositories/SgCore TR |
[=1- Yiew Settings v, actel-ip, comfrepositories/DirectCore
i Display
- Filters

Defaults |
o« | _cma |

Figure 83 - Catalog Display Options Dialog Box

127

PolarFire Design Flow User Guide Q Micmsemi,

Repositories

Vault location

Display

Filters

Power Matters.”

Vault/Repositories Settings

A repository is a location on the web that contains cores that can be included in your design.

The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault.
The Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your
Vault.

The default repository cannot be permanently deleted; it is restored each time you open the Manage
Repositories dialog box.

Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed
in your Catalog can be filtered like any other core.

Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

Use this option to choose a new vault location on your local network. Enter the full domain pathname in the
Select new vault location field. Use the format:

\\server\share
and the cores in your Vault will be listed in the Catalog.

View Settings

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list
and view specific cores.

List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core
to configure it. This view is often the best option if you are using the filters to customize your display.

Show core version - Shows/hides the core version.

Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example,
to view cores that include 'sub’ in the name, set the Filter Field to Name and type sub.

Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.

Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.

Show remote cores that are not in my vault - Displays remote cores that have not been added to your
vault in your Catalog.

Changing Output Port Capacitance

Output propagation delay is affected by both the capacitive loading on the board and the I/O standard. The
1/0 Attribute Editor in ChipPlanner provides a mechanism for setting the expected capacitance to improve
the propagation delay model. SmartTime automatically uses the modified delay model for delay calculations.

To change the output port capacitance and view the effect of this change in SmartTime Timing Analyzer,
refer to the following example. The figure below shows the delay from FF3 to output port OUT2. It shows a
delay of 6.603 ns based on the default loading of 35 pF.

128

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

?_..V-Maaimum Delay Analysis Yiew

Figure 84 - Maximum Delay Analysis View

Analysis For scenatio Frar * To |*
o Primary Scenario
MAX
Apply Filker Stare Filker | Reset Filker |
= (B Summary
B Datasheet - =
|_£_|..v‘ {nh CLK2 Source Pin Sink Pin Der::y Sr:sack} A"r':;al Heq::ed [Ssznl:
¥ Register to Register
- External Setup 2 1139/RAMBLOCKD.CLEA | DATADUTRAMIZ) £.300 8121 8121
Clock to Output 3 1139/RAMBLOCKO:CLEA |DATADUTRAM(1) 5.234 8.055 8.055
- Register to &synchronous | |4 1139/RAMBLOCKD.CLEA | DATAOUTRAMIO) 5.801 7622 7622
- External Recovery I} 1133/RAMBLOCKD:CLEA | DATAOUTRAM(Z] 5.658 7.473 7.473
- Azynchronous to Register
¥ CLK1ta CLK2
¥ @ CLKT
B-¥ @ CLK3
¥ Qi CLK4
== Pinta Pin
¢ e Input to Output
w0 User Sels Details for path -]
From: FF3:CLK
To: OUT2
Pin Hame Type Met Hame Cell Hame Op | [
FF3:0M cell ADLIB:DFIO +
AND_ZA net $1N26 +
AND_2Y cel ADLIB:ANDZ +
0UTZ_pad/U0AIN:D net ouT2 o +
2 OUTZ pad/AJ0/01:00UT cell ADLIB:IOTRI_OE_EB +
] This =t has no slack 0UTZ_pad/U0/0D net 0UT2_pad/U0/MET] +
g for any of ts paths OUTZ_pad/0/00:FAD el ADLIB:IOPAD_THI -
n ouT2 net auT2 +
slack distribution (ns) data arrival time v
. 4 L4

If your board has output capacitance of 75pf on OUT2, you must perform the following steps to update the

timing number:
1. Open the I/O Attribute Editor and change the output load to 75pf.

Figure 85 - 1/O Attribute Editor View
2. Select File > Save.
3. Select File > Close.
4. Open the SmartTime Timing Analyzer.
You can see that the Clock to Output delay changed to 7.723 ns.

Core Manager

Porlavs | MacroCell | Pind | Locked |Bank Hame| 10 Stendard| Outpant Drive tmA)| Slew | Bosistor Pul] Skew | dutput Lasa) lee 10 Reg
(I [ETF] | ADLBCLHBLF 12 [| Bamkl | LviTL - - Tonz - I
1_ oLkE ADLBRBLF is [' Banik1 | LwTTL - | - Foiree - |
J_W:A.ISDE'[J) ADLBRBLF = . | Bkl | LVTTL - - e | - r
4 |DATAOUTRAMIZ) ATLEOUTEUFE &% | Bl | LVTTL 12 Hgh [0 - = T
s louT: ADLBOU £] m

The Core Manager only lists cores that are in your current project. If any of the cores in your current project

are not in your vault, you can use the Core Manager to download them all at once.

For example, if you download a sample project and open it, you may not have all the cores in your local
vault. In this instance you can use the Core Manager to view and download them with one click. Click
Download All to add any missing cores to your vault. To add any individual core, click the green download

button.
To view the Core Manager, from the View menu choose Windows > Cores.
The column headings in the Core Manager are:

e Name - Core name.

e Vendor - Source of the core.

e Core Type - Core type.

e Version - Version of the core used in your project; it may be a later version than you have in your

vault. If so, click Download All to download the latest version.

129

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

configure_design_initialization_data

This Tcl command sets the parameter values needed for generating initialization data.

configure_design_initialization_data
-second_stage_start_address {<valid_snvm_address>} \
-third_stage_start_address {<valid_address_for_third_stage memory type>} \
-third_stage_memory_type {<UPROM | SNVM | SPIFLASH_NONAUTH >}\
-third_stage_spi_clock divider { 1] 2 | 4] 6} \
—-init_timeout {<int between_1_and_128_seconds>}

Arguments
-second_stage_start_address
String parameter for the start address of the second stage initialization client.
Specified as a 32-bit hexadecimal string.

The first stage client is always placed in SNVM, so it must be a valid SNVM address aligned on a page
boundary.

There are 221 sNVM pages and each page is 256 bytes long, so the address will be between 0 and
DCOo0.

Notes:
Although the actual size of each page is 256 bytes, only 252 bytes are available to the user.

The first stage initialization client is always added to SNVM at 0xDCOO (page 220). So the valid addresses
for the second stage initialization client are 0x0 (page 0) to OxDBOO (page 219).

-third_stage_start_address
String parameter for the start address of the third stage initialization client.
Specified as a 32-bit hexadecimal string, and must be one of the following:
— valid sSNVM address aligned on a page boundary
— valid UPROM address aligned on a block boundary
— valid SPIFLASH address
-third_stage _memory_type
The memory where the third stage initialization client will be placed.
The value can be UPROM, SNVM, or SPIFLASH_NONAUTH. The default is UPROM.
This parameter determines the valid value for parameter ‘third_stage_start_address’.
-third_stage_spi_clock_divider
The value can be 1, 2, 4, or 6. The default value is 1.
—-init_timeout
Timeout value in seconds. Initialization is aborted if it does not complete before timeout expires.
The value can be between 1 and 128. The default value is 128.

Example

configure_design_initialization_data
-second_stage_start_address 200 \
-third_stage_start_address 400 \
-third_stage_memory_type UPROM \
-third_stage_spi_clock_divider 4 \
—-init_timeout 120

See Also
generate_design_initialization_data

130

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

configure_snvm

Tcl command; configures sNVM from the specified configuration file.

configure_snvm -cfg_file file

Arguments
-cfg_File file
file is a valid configuration file to configure SNVM.

See Also
"Configure sSNVM" on page 74

Sample sNVM Configuration File
set_plain_text_client \
-client_name {pt_A} \
-number_of _bytes 64 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory files/binary8x16.mem} \
-start_page 0 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom 0O
set_plain_text_client \
-client_name {pt_client} \
-number_of_bytes 64 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory files/binary32X16.mem} \
-start_page 2 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom 0O
set_plain_text_client \
-client_name {pt_client _16bit} \
-number_of_bytes 32 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {C:/local_z_folder/work/memory files/binaryl6X16.mem} \
-start_page 1 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom 0O
set_plain_text_client \
-client_name {INIT_STAGE 1_SNVM_CLIENT} \
-number_of_bytes 504 \

131

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {designer\top\top_init_stage 1 snvm.mem} \
-start_page 219 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom 0O
set_plain_text_client \
-client_name {pt B} \
-number_of_bytes 1 \
-content_type {STATIC_FILL} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {} \
-start_page 3 \
-use_for_simulation 0 \
-reprogram 1 \

-use_as_rom 0O

See Also
set plain_text client

set plain_text auth client

set_cipher_text auth client

set _usk client

Importing Source Files — Copying Files Locally

Designer in Libero SoC cannot import files from outside your project without copying them to your local
project folder. You may import source files from other locations, but they are always copied to your local
folder. Designer in Libero SoC always audits the local file after you import; it does not audit the original file.

When the Project Manager asks you if you want to copy files "locally”, it means ‘copy the files to your local
project folder'. If you do not wish to copy the files to your local project folder, you cannot import them. Your
local project folder contains files related to your Libero SoC project.

Files copied to your local folders are copied directly into their relevant directory: netlists are copied to the
synthesis folder; source files are copied to hdl folder and constraint files to constraint folder, etc. The files
are also added to the Libero SoC project; they appear in the Files tab.

Create Clock Constraint Dialog Box

Use this dialog box to enter a clock constraint setting.

It displays a typical clock waveform with its associated clock information. You can enter or modify this
information, and save the final settings as long as the constraint information is consistent and defines the
clock waveform completely. The tool displays errors and warnings if information is missing or incorrect.
To open the Create Clock Constraint dialog box (shown below) from the SmartTime Constraints Editor,
choose Constraints > Clock.

132

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

.| Create Clock Constraint

Clock Mame :

Clock Source :

HS—.4

E Y &

or Frequency: Mhz

——— Dutycyde: ——
50.0000 Ya

—— Offset:

0.000 ns

Comment :

e o]|

Figure 86 - Create Clock Constraint Dialog Box

Clock Source
Enables you to choose a pin from your design to use as the clock source.

The drop-down list is populated with all explicit clocks. You can also select the Browse button to access all
potential clocks. The Browse button displays the Select Source Pins for Clock Constraint Dialog Box.

Clock Name

Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is
provided.

T(zero) Label
Instant zero used as a common starting time to all clock constraints.

Period
When you edit the period, the tool automatically updates the frequency value.
The period must be a positive real number. Accuracy is up to 3 decimal places.

Frequency
When you edit the frequency, the tool automatically updates the period value.
The frequency must be a positive real number. Accuracy is up to 3 decimal places.

Offset (Starting Edge Selector)

Enables you to switch between rising and falling edges and updates the clock waveform.

If the current setting of starting edge is rising, you can change the starting edge from rising to falling.
If the current setting of starting edge is falling, you can change the starting edge from falling to rising.

Duty Cycle
This number specifies the percentage of the overall period that the clock pulse is high.
The duty cycle must be a positive real number. Accuracy is up to 4 decimal places. Default value is 50%.

Offset
The offset must be a positive real number. Accuracy is up to 2 decimal places. Default value is 0.

Comment
Enables you to save a single line of text that describes the clock constraints purpose.

133

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

See Also
Specifying Clock Constraints

Select Source Pins for Clock Constraint Dialog Box

Use this dialog box to find and choose the clock source from the list of available pins.

To open the Select Source Pins for the Clock Constraint dialog box (shown below) from the SmartTime
Constraints Editor, click the Browse button to the right of the Clock source field in the Create Clock
Constraint dialog box.

Select Source Pins for Clock Constraint

Specify pins * by explicit list " by kevyword and wildcard
fyvailable Pins: Aszzigned Pins:
CPUIC(E,

YidRefClk

&dd Al =

Lk

Filter available objects:

Pin Type: Explicit clacks j

| # Filter

Help QK | Cancel

Figure 87 - Select Source Pins for Clock Constraint Dialog Box

Available Pins
Displays all available pins.

Filter Available Pins

Explicit clock pins for the design is the default value. To identify any other pins in the design as clock pins,
right-click the Pin Type pull-down menu and select one of the following:

e Explicit clocks

¢ Potential clocks

e Input ports

e All Pins

e All Nets

e Pins on clock network
¢ Nets in clock network

134

PolarFire Design Flow User Guide O MI'CrDSGmi.

Power Matters.”

You can also use the Filter to filter the clock source pin name in the displayed list.

See Also
Specifying clock constraints

Specifying Clock Constraints

Specifying clock constraints is the most effective way to constrain and verify the timing behavior of a
sequential design. Use clock constraints to meet your performance goals.
To specify a clock constraint:

1. Add the constraint in the editable constraints grid or open the Create Clock Constraint dialog box using
one of the following methods:

e Click the icon in the Constraints Editor.
¢ Right-click the Clock in the Constraint Browser and choose Add Clock Constraint.
e Double-click Clock in the Constraint Browser.

The Create Clock Constraint dialog box appears (as shown below).

| Create Clock Constrai

Clock Marme : Clack Source : - E]

f#———— Period: | ns ——M o Frequency: Mhz

Fy Fy

—— Offset: —w4— Dutycyde: ——»
0.000 ns 50.0000 %

Comment :

o] o)

Figure 88 - Create Clock Constraint Dialog Box

2. Select the pin to use as the clock source. You can click the Browse button to display the Select
Source Pins for Clock Constraint Dialog Box (as shown below).

Note: Do not select a source pin when you specify a virtual clock. Virtual clocks can be used to define a
clock outside the FPGA that is used to synchronize 1/Os.

Use the Choose the Clock Source Pin dialog box to display a list of source pins from which you can
choose. By default, it displays the explicit clock sources of the design. To choose other pins in the
design as clock source pins, select Filter available objects - Pin Type as Explicit clocks, Potential
clocks, All Ports, All Pins, All Nets, Pins on clock network, or Nets in clock network. To display a
subset of the displayed clock source pins, you can create and apply a filter.

Multiple source pins can be specified for the same clock when a single clock is entering the FPGA
using multiple inputs with different delays.

Click OK to save these dialog box settings.

Specify the Period in nanoseconds (ns) or Frequency in megahertz (MHz).
Modify the Clock Name. The name of the first clock source is provided as default.
Modify the Duty cycle, if needed.

Modify the Offset of the clock, if needed.

Modify the first edge direction of the clock, if needed.

Click OK. The new constraint appears in the Constraints List.

© N o g

135

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Note: When you choose File > Save, the Timing Constraints Editor saves the newly created constraint in
the database.

¥ Constraints Editor

=) Constraints
= Requirements

Generated Clock
Input Delay
Output Delap

= Exceptions
tax Delay
tdin Delay
Multicpcle
False Path

= Bdvanced
Clock Source Latency
Dizable Timing
Clock Uncertainty

Period| Frequency| Dutycycle| First | Offset File| Comments|

Waveform|

| Syntax | Clock Name| Clock Source| (ns) (MHz) = Edge| (ns)
Click here bo add a constraint
1 \d my_clack CLK 100.00) 10.000 50.000 rising | 0.000 |050 GUI

Figure 89 - Timing Constraint View

Create Generated Clock Constraint Dialog Box

Use this dialog box to specify generated clock constraint settings.

It displays a relationship between the clock source and its reference clock. You can enter or modify this
information, and save the final settings as long as the constraint information is consistent. The tool displays
errors and warnings if the information is missing or incorrect.

To open the Create Generated Clock Constraint dialog box (shown below) from the SmartTime Constraints
Editor, choose Constraints > Generated Clock.

136

PolarFire Design Flow User Guide Q Micmsemi,

#

Power Matters.”

.| Create Generated Clock Constraint I. ? &J

Clock. Pin: - E]

Reference Pin:

Clack

Zanditioning
ircuitiy]
Tcmck Port FPGA
Generated Clock Mame
The generated Frequency is such as
ficlack) = Fireference) = 1 1 Get Pre-Computed Factor
The generated waveform is the reference waveform

Cornrmnenk:

o) [caes

Figure 90 - Create Generated Clock Constraint

Clock Pin
Enables you to choose a pin from your design to use as a generated clock source.

The drop-down list is populated with all unconstrained explicit clocks. You can also select the Browse button
to access all potential clocks and pins from the clock network. The Browse button displays the Select
Generated Clock Source dialog box.

Reference Pin
Enables you to choose a pin from your design to use as a generated reference pin.

Generated Clock Name

Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is
provided.

Generated Frequency

The generated frequency is a factor of reference frequency defined with a multiplication element and/or a
division element.

Generated Waveform
The generated waveform could be either the same as or inverted w.r.t. the reference waveform.

Comment
Enables you to save a single line of text that describes the generated clock constraints purpose.

137

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

See Also
create generated clock (SDC)
Specifying Generated Clock Constraints
Select Generated Clock Source

Select Generated Clock Source Dialog Box

Use this dialog box to find and choose the generated clock source from the list of available pins.

To open the Select Generated Clock Source dialog box (shown below) from the Timing Constraints Editor,
open the Create Generated Clock Constraint dialog box and click the Browse button for the Clock Pin.

B Select Generated Clock Source @I-E_hJ

Filter available pins :

Fin Type : [Explicit clocks -]

=
o) (o

Figure 91 - Select Generated Clock Source Dialog Box

Filter Available Pins

Explicit clock pins for the design is the default value. To identify any other pins in the design as the
generated clock source pins, from the Pin Type pull-down list, select Explicit clocks, Potential clocks, All
Ports, All Pins, All Nets, Pins on clock network, or Nets in clock network. You can also use the Filter to
filter the generated clock source pin name in the displayed list.

Specifying Generated Clock Constraints

Specifying a generated clock constraint enables you to define an internally generated clock for your design
and verify its timing behavior. Use generated clock constraints and clock constraints to meet your
performance goals.
To specify a generated clock constraint:

1. Open the Create Generated Clock Constraint dialog box using one of the following methods:

e Click the icon.

¢ Right-click the Generated Clock in the Constraint Browser and choose Add Generated Clock.

138

& Microsemi

PolarFire Design Flow User Guide
Power Matters.

Double-click the Generated Clock Constraints grid. The Create Generated Clock Constraint

[)
dialog box appears (as shown below).

Create Generated Clock Constraint

Clock Fin: | [N ~ J

Clock Reference: J

Clack

Canditianing
Circuitiy]
Ttlnck Fort FPGA
Generated Clock Mame |
The generated frequency is such as
ficlock) = Fireference) x | 1 | | 1
The generated waveform is the came 3= w the reference waveform

Carment:

Help ok | Cancel

Figure 92 - Create Generated Clock Constraint

2. Select a Clock Pin to use as the generated clock source. To display a list of available generated clock
source pins, click the Browse button. The_Select Generated Clock Source dialog box appears (as

shown below).

139

PolarFire Design Flow User Guide O Mfcmsem’.

Power Matters.”

Select Generated Clock Source

Select a pin:

¥CMP33/U0/U2_DORL:Q
¥CMP33/U0/U2_DOR2:0)
pll1:CLEL
pll1:CLE2

Filter available objects:
Type: Explicit clocks ﬂ

Filter:

|* Filter
Help | QK | Cancel |

Figure 93 - Select Generated Clock Source Dialog Box

3. Modify the Clock Name if necessary.
4. Click OK to save these dialog box settings.

5. Specify a Clock Reference. To display a list of available clock reference pins, click the Browse
button. The Select Generated Clock Reference dialog box appears.

5. Click OK to save the dialog box settings.

6. Specify the values to calculate the generated frequency: a multiplication factor and/or a division factor
(both positive integers).

7. Specify the first edge of the generated waveform either same as or inverted with respect to the
reference waveform.

8. Click OK. The new constraint appears in the Constraints List.

Tip: From the File menu, choose Save to save the newly created constraint in the database.

Select Generated Clock Reference Dialog Box

Use this dialog box to find and choose the generated clock reference pin from the list of available pins.

To open the Select Generated Clock Reference dialog box (shown below) from the SmartTime Constraints
Editor, open the Create Generated Clock Constraint Dialog Box dialog box and click the Browse button for
the Clock Reference.

140

PolarFire Design Flow User Guide C Mfcmseml

Power Matters.”
% | Select Generated Clock Source |

FDDR_ADDR -
FDDR_ADDR[0]
FDDR_ADDR[10]
FDDR_ADDR[11]
FDDR_ADDR[12]
FDDR_ADDR[13]
FDDR_ADDR[14]
FDDR_ADDR[15]
FDDR_ADDR[1] 1

Filter available pins :

. =
.
Help L oK]| fConcel |

Figure 94 - Select Generated Clock Reference Dialog Box

Filter Available Pins
To identify any other pins in the design as the generated master pin, select Filter available objects - Type
as Clock Network. You can also use the Filter to filter the generated reference clock pin name in the
displayed list.
See Also

Specifying generated clock constraints

Design Hierarchy in the Design Explorer

The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in
the project. The software continuously analyzes and updates source files and updates the content. The
Design Hierarchy tab (see figure below) displays the structure of the modules and components as they
relate to each other.

141

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Design Hierarchy [4
Build Show: | Components - %]
4 e@ work

[E| XCVR_REF_CLK_M (XCVR_REF_CLK_N_syn_comps.y)
E'=j ACVR_REF_CLK [XCWR_REF_CLE_syn_comps.v)
E%_ KCVR_APE_LIMNK (XCVR_APB_LINK_syn_comps.v)
sdf

> E pf_pcie_to_ddr3_top
my_transmitPLL
ry_ddr3

E'=j G5_APBLINK_MASTER (g5_apblink_masterv)
il Coretx4sRAM_LIE

Figure 95 - Design Hierarchy
You can change the display mode of the Design Hierarchy by selecting Components or Modules from the
Show drop-down list. The components view displays the entire design hierarchy; the modules view displays
only schematic and HDL modules.
You can build the Design Hierarchy and Simulation Hierarchy by clicking the Build button.
Note: The Build button appears only if Enable On Demand Build Design Hierarchy has been enabled in
Project Settings. This option is enabled by default for PolarFire devices.

A yellow icon &l indicates that the Design Hierarchy is out of date (invalidated). Any change to the
design sources/stimuli invalidates the Design Hierarchy. Click the Build button to rebuild the Design

hierarchy.

The file name (the file that defines the block) appears next to the block name in parentheses.

To view the location of a component, right-click and choose Properties. The Properties dialog box displays
the pathname, created date, and last modified date.

All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.

If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:

Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the
Design Hierarchy to the SmartDesign Canvas. See the SmartDesign User Guide for more information.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.
Table 4 - Design Hierarchy Icons

Icon Description
5] SmartDesign component
(5 o] SmartDesign component with HDL netlist not generated
IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

@ Core

w Error during core validation

NE Updated core available for download

142

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartdesign_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Digest File

Power Matters.”

Icon Description

B HDL netlist

Users can verify which bitstream file was programmed onto their devices by running the VERIFY or
VERIFY_DIGEST actions on each device that was programmed. This is a costly and time-consuming
process. To speed up the verification process, digests are printed during bitstream generation and bitstream
programming. These digests can be compared to verify that all of the devices were programmed with the
correct bitstream file.

The bitstream file is divided into three major component sections: FPGA fabric, eNVM, and Security. A valid
bitstream will contain a combination of any of the three primary bitstream components.

Use Case

When a customer creates a design in Libero and then exports the STAPL file (for FlashPro) or programming
job (for FlashPro Express), the digest of each of the primary components is printed in the Libero log window
and saved in a digest file under the export folder. The digest file is a text file containing the bitstream
component name with its corresponding digest. The name of the digest file will match the name of the
STAPL/programming job exported, and will be appended with a “.digest” extension.

The customer then sends the STAPL/programming job to a production programming house. Now, when the
devices are programmed, the digest of each of the primary components is printed in the log window. The
production programming house saves the log files and sends the devices along with log files back to the
customer. The customer can then verify that the correct design was programmed on the device by matching
the digests in the log file with that in the *.digest file under the Libero export folder.

Example Using STAPL File

If a STAPL file is exported, the digests will be printed in the log window, as shown in the example below.
Libero log:

Opened "D:/flashpro_files/m2s005_digestl/designer/al_MSS/al_MSS_fp/al_MSS.pro*

The "open_project®™ command succeeded.

PDB file

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\4a8552f8-57ee-4baa-97ee-
2baa57ee2baa.pdb® has

been loaded successfully.

DESIGN : al_MSS; CHECKSUM : DE15; PDB_VERSION : 1.9
The "load_programming_data® command succeeded.
Sucessfully exported STAPL file:

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\export\al_MSS.stp"; file programs
Fabric

and eNVM.

Fabric component digest:
276Tbefb0al8ccOdeld45efc84589745ee02fc2adbccl1259fbeb674094754014
eNVM component digest:
6b2c2353e25c5982643c32640ac16c581874c8950300135622¢c126ee22d8blde
Finished: Thu Jan 22 12:37:32 2015 (Elapsed time 00:00:06)

The "export_single_stapl® command succeeded.

The "set_programming_file® command succeeded.

Project saved.

The "save_project” command succeeded.

Project closed.

143

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

The export folder will contain the exported STAPL file along with digest file. In this example, there will be two
files, “al_MSS.stp” and “al_MSS_stp.digest”. The content of the al_MSS_stp.digest file is shown below:

Fabric component digest: 276fbefb0al8cc0deld45etc84589745ee02fc2adbccl1259fbeb674094754014
eNVM component digest: 6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde
When the device is programmed in the production programming house by loading the STAPL file in
FlashPro, the log will be as follows:

programmer "73207" : Scan Chain...

Warning: programmer "73207" : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer "73207" : Check Chain...

programmer "73207" : Scan and Check Chain PASSED.

programmer "73207" : device "M2S/M2GLO05(S)" : Executing action PROGRAM
programmer "73207" : device "M2S/M2GLO05(S)" : Family: SmartFusion2

programmer "73207" : device "M2S/M2GLO05(S)" : Product: M2S005

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT ISC_ENABLE_RESULT[32] = 007c6b44
programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT CRCERR: [1] 0

programmer "73207% : device "M2S/M2GLO05(S)" : EXPORT EDCERR: [1] 0

programmer "73207" : device "M2S/M2GLO05(S)" : TEMPGRADE: ROOM

programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT VPPRANGE: [3] = 2
programmer "73207" : device "M2S/M2GLO05(S)" : VPPRANGE: HIGH

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT TEMP: [8] = 6b

programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT VPP: [8] = 7c

programmer "73207" : device "M2S/M2GLO05(S)*" : Programming FPGA Array and eNVM...

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT Fabric component digest[256] =
276fbefb0al8cc0deld45etc84589745ee02fc2adbcc1259fbeb674094754014

programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde

programmer "73207" : device "M2S/M2GLO05(S)*

programmer "73207" : device "M2S/M2GLOO5(S)" : EXPORT DSN[128] =
€6e99c2d1a992113c¥8231c4be847ach

programmer "73207° : device "M2S/M2GLO05(S)*

programmer "73207% : device "M2S/M2GLO05(S)" : Finished: Thu Jan 22 17:57:37 2015
(Elapsed time 00:00:19)

programmer "73207" : device “"M2S/M2GLO05(S)" : Executing action PROGRAM PASSED.

programmer "73207" : Chain programming PASSED.

Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)
oO-0-0-0-0-0

The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file to the contents of the al_MSS_stp.digest file.

Example Using Programming Job

If a programming job is exported, the digests will be printed in the log window, as shown in the example
below.

Libero log:

Software Version: 11.5.1.5

Opened "D:/flashpro_files/m2s005_digestl/designer/al_MSS/al_MSS_fp/al_MSS.pro*

The "open_project®™ command succeeded.

PDB file

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\83ce6816-1e56-496b-9e56-
d96bl1le56d96b.pdb* has

144

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

been loaded successfully.

DESIGN : al _MSS; CHECKSUM : DE15; PDB_VERSION : 1.9
The "load_programming_data® command succeeded.
Sucessfully exported STAPL file:

"D:\flashpro_files\m2s005_digestl\designer\al_MSS\export\al MSS_M2S005.stp”; Ffile
programs

Fabric and eNVM.

Fabric component digest:
276Tbefb0al8ccOdeld45efc84589745ee02fc2adbccl1259fbeb674094754014
eNVM component digest:
6b2c2353e25¢5982643c32640ac16c581874c8950300135622c126ee22d8blde
Finished: Wed Jan 28 16:48:56 2015 (Elapsed time 00:00:06)

The "export_single_stapl® command succeeded.

The "set_programming_file® command succeeded.

Project saved.

The "save_project® command succeeded.

Project closed.

The export folder will contain the exported programming job along with digest file. In this example, there will

be two files, “al_MSS.job” and “al_MSS_job.digest” . The content of the al_MSS_job.digest file is shown
below:

Fabric component digest: 276fbefb0al8cc0deld45etc84589745ee02fc2adbccl1259fheb674094754014
eNVM component digest: 6b2c2353e25¢c5982643c32640ac16c581874c8950300135622c126ee22d8blde
When the device is programmed in the production programming house by loading the programming job in
FlashPro Express, the log will be as follows:

programmer "73207" : Scan Chain...

Warning: programmer "73207" : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer "73207" : Check Chain...

programmer ®73207" : Scan and Check Chain PASSED.

programmer "73207" : device "M2S/M2GLO05(S)" : Executing action PROGRAM
programmer "73207" : device "M2S/M2GLO05(S)*" : Family: SmartFusion2

programmer "73207" : device "M2S/M2GLO05(S)" : Product: M2S005

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT ISC_ENABLE_RESULT[32] = 007c6b44
programmer "73207" : device “"M2S/M2GLOO5(S)" : EXPORT CRCERR: [1] = O

programmer "73207" : device “"M2S/M2GLO05(S)" : EXPORT EDCERR: [1] = O

programmer "73207" : device "M2S/M2GLO05(S)" : TEMPGRADE: ROOM

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT VPPRANGE: [3] = 2
programmer "73207% : device "M2S/M2GLO05(S)" : VPPRANGE: HIGH

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT TEMP: [8] = 6b

programmer "73207" : device "M2S/M2GLO05(S)*" : EXPORT VPP: [8] = 7c

programmer "73207" : device "M2S/M2GLO05(S)*" : Programming FPGA Array and eNVM...

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT Fabric component digest[256] =
276fbefb0al8cc0deld45efc84589745ee02fc2adbccl1259fbeb674094754014

programmer "73207% : device "M2S/M2GLO05(S)" : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8blde

programmer "73207" : device "M2S/M2GLO05(S)*

programmer "73207" : device "M2S/M2GLO05(S)" : EXPORT DSN[128] =
c6e99c2d1a992f13cf8231c4be847ach

programmer "73207" : device "M2S/M2GLO05(S)*

programmer "73207" : device “"M2S/M2GLO05(S)" : Finished: Thu Jan 22 17:57:37 2015
(Elapsed time 00:00:19)

programmer "73207" : device "M2S/M2GLO05(S)" : Executing action PROGRAM PASSED.

145

PolarFire Design Flow User Guide C Micmsemi.

Power Matters.”

programmer "73207° : Chain programming PASSED.
Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)
0O-0-0-0-0-0

The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file above to the contents of the al_MSS_job.digest file.

See Also
Export Bitstream

Design Rules Check

The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the
1] HEROrLs | S | b |

——
® OO i
Reports tab. You can also initiate a Design Rules Check by clicking on the B I ."-'.‘

button of the SmartDesign Canvas tab menu.
To view the results, from the Design menu, choose Reports.

e Status displays an icon to indicate if the message is an error or a warning (as shown in the figure
below). Error messages are shown with a small red sign and warning messages with a yellow

exclamation point.

¢ Message identifies the specific error/warning (see list below); click any message to see where it
appears on the Canvas

e Details provides information related to the Message

Reports & X | StartPage & X | @m g X ‘
4 Project Summary
polarfire_countl6.log DRC RBPOI"L XXX
4 30 reports
4 3000 Status Message Details
soo¢ DRCxml & |Floating Driver Floating output bus pin COREABC_(:10_OUT[0]
4 d3 @ | Required Pin Connection Unconnected input pin COREABC_0:NSYSRESET
d3_manifest.txt
4 43 DDRPHY BLK O Reguired Pin Connection Unconnected input pin COREABC_0:PCLK
'd3 DDRPHY BLK A | Floating Driver Floating output pin COREABC_0:PRESETN
Ji) Unconnected Bus Unconnected bus interface pin COREABC_0:APB3master
Interface
ndriven Pin nconnected input pin Core nterconnect_0:
@ | Und P U d CoreAXI41 0:ACLK
ndriven Pin nconnected input pin Core nterconnect_0:
© | Und Pi u di in CoreAXI41 0:ARESETN
i Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave0
Interface
& Uncomnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslavel
Interface
& Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave2
Interface
A Unconnected Bus Unconnected bus interface pin CoreAXI4Interconnect_0:AXI4mslave3
Interface
a UHCLCT:ECIEUS lnrannactad hiie intarfaca nin CaraAYTATntarrannact M-AYTAdmclouad

Figure 96 - Design Rules Check Results

Message Types:

Unused Instance - You must remove this instance or connect at least one output pin to the rest of the
design.

Out-of-date Instance - You must update the instance to reflect a change in the component referenced by
this instance.

Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low
(GND) or tie high (VCC).

146

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins
marked unused are ignored by the Design Rules Check.

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is
required connection.

Required Bus Interface Connection — You must connect this bus interface before you can generate the
design. These are typically silicon connection rules.

Exceeded Allowable Instances for Core — Some IP cores can only be instantiated a certain number of
times for legal design because of silicon limitations. You must remove the extra instances.

Incompatible Family Configuration — The instance is not configured to work with this project’'s Family
setting. Either it is not supported by this family or you need to re-instantiate the core.

Incompatible Die Configuration — The instance is not configured to work with this project’s Die setting.
Either it is not supported or you need to reconfigure the Die configuration.

No RTL License, No Obfuscated License, No Evaluation License — You do not have the proper license
to generate this core. Contact Microsemi SoC to obtain the necessary license.

No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the
Canvas and choose Auto-connect

Self-Instantiation - A component cannot instantiate itself-This is reported only in the Log/Message Window.

Editable Constraints Grid

The Constraints Editor enables you to add, edit and delete.

© MainWindow - [Contraints Editor for scenario Primary]
[] File Edit View Constraints Tools Help -] 8] x

HON O2 8 i dw e 5 & E B &8 @0 &

Contraints Editor for scenario Primary

(= Constraints
= Requirements Syntax Clock Mame | Clock Source | Period {ns) Eedusncs Dutycycle First Edge Offset {ns)

{MHz) {%o)
M Generated Clock.
Input Delay D Click here to add a constraint

Cutput Delay
[=} Exceptions
Max Delay
Min Delay
Mulkicycle
False Path
= Advanced
Clock Source Latency
Disable Timing
Clock Uncertainity

s > £ >

Temp: COM | Yolt: COM | | Speed: STD

Figure 97 - Constraints Editor

To add a new constraint:
1. Select a constraint type from the constraint browser.

2. Enter the constraint values in the first row and click the green check mark to apply your changes. To
cancel the changes press the red cancel mark.

3. The new constraint is added to the Constraint List. The green syntax flag indicates that the constraint

was successfully checked.
To edit a constraint:

1. Select a constraint type from the constraint browser.

2. Select the constraint, edit the values and click the green check mark to apply your changes. To cancel
the changes press the red cancel mark. The green syntax flag indicates that the constraint was
successfully checked.

To delete a constraint:

1. Select a constraint type from the constraint browser.
2. Right-click the constraint you want to delete and choose Delete Constraint.

147

https://www.microsemi.com/products/fpga-soc/design-resources/ip-cores

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

export_spiflash_image

This Tcl command exports a SPI Flash image file to a specified directory.
export_spiflash_image -file_name {name of file} -export_dir {absolute path to folder location}
Arguments
-file_name name of file
The name of the image file.

-export_dir absolute path to folder location
Folder/directory location.

See Also

Export Flash Image

extended_run_lib

Note: This is not a Tcl command; it is a shell script that can be run from the command line.
The extended_run_lib Tcl script enables you to run the multiple pass layout in batch mode from a
command line.

$ACTEL_SW_DIR/bin/libero script:$ACTEL_SW_DIR/scripts/extended_run_lib.tcl
logfile:extended_run.log “script_args:-root path/designer/module_name [-n numPasses] [-
starting_seed_index numindex] [-compare_criteria value] [-c clockName] [-analysis value] [-

slack_criteria value] [-stop_on_success] [-timing_driven]|-standard] [-power_driven value]
[-placer_high_effort value]”

Note:

e There is no option to save the design files from all the passes. Only the (Timing or Power) result
reports from all the passes are saved.
Arguments
-root path/designer/module_name

The path to the root module located under the designer directory of the Libero project.
[-n numPasses]

Sets the number of passes to run. The default number of passes is 5.
[-starting_seed_index numindex]

Indicates the specific index into the array of random seeds which is to be the starting point for the passes.

Value may range from 1 to 100. If not specified, the default behavior is to continue from the last seed
index that was used.

[-compare_criteria value]

Sets the criteria for comparing results between passes. The default value is set to frequency when the —c
option is given or timing constraints are absent. Otherwise, the default value is set to violations.

Value Description

frequency | Use clock frequency as criteria for comparing the results between passes. This option can be
used in conjunction with the -c option (described below).

violations | Use timing violations as criteria for comparing the results between passes. This option can be

used in conjunction with the -analysis, -slack_criteria and -stop_on_success options
(described below).

148

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Value Description

power Use total power as criteria for comparing the results between passes, where lowest total
power is the goal.

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is
used. The clock name should match with one of the Clock Domains in the Summary section of the Timing
report.

[-analysis value]

Applies only when the timing violations comparison criteria is used. Specifies the type of timing violations
(the slack) to examine. The following table shows the acceptable values for this argument:

Value Description
max Examines timing violations (slack) obtained from maximum delay analysis. This is the
default.
min Examines timing violations (slack) obtained from minimum delay analysis.

[-slack_criteria value]

Applies only when the timing violations comparison criteria is used. Specifies how to evaluate the timing
violations (slack). The type of timing violations (slack) is determined by the -analysis option. The following
table shows the acceptable values for this argument:

Value Description

worst | Sets the timing violations criteria to Worst slack. For each pass obtains the most amount of
negative slack (or least amount of positive slack if all constraints are met) from the timing
violations report. The largest value out of all passes will determine the best pass. This is the
default.

tns Sets the timing violations criteria to Total Negative Slack (tns). For each pass it obtains the sum of
negative slack values from the first 100 paths from the timing violations report. The largest value
out of all passes determines the best pass. If no negative slacks exist for a pass, then the worst
slack is used to evaluate that pass.

[-stop_on_success]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slack) is
determined by the -analysis option. Stops running the remaining passes if all timing constraints have been
met (when there are no negative slacks reported in the timing violations report).

[-timing_driven|]-standard]

Sets layout mode to timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.

[-power_driven value]

Enables or disables power-driven layout. The default is off or the mode used in the previous layout
command. The following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout.

149

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Value Description

on Enables power-driven layout.

[-placer_high_effort value]

Sets placer effort level. The default is off or the mode used in the previous layout command. The following
table shows the acceptable values for this argument:

Value Description
off Runs layout in regular effort.
on Activates high effort layout mode.

Return

A non-zero value will be returned on error.

Supported Families
PolarFire

Exceptions
None

See Also
Place and Route - PolarFire

Multiple Pass Layout - PolarFire

Files Tab and File Types

The Files tab displays all the files associated with your project, listed in the directories in which they appear.

Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can
also delete files from the project by selecting Delete from Project from the right-click menu. You can delete
files from the project and the disk by selecting Delete from Disk and Project from the right-click menu.

You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu. See the SmartDesign User Guide for more details.

You can configure a component by double-clicking the component or by selecting Open Component from
the right-click menu.

File Types

When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your 'local' project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage
your files as you import them.)

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.

The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.

component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC
project.

constraint directory - All your constraint files (SDC, PDC)
designer directory - *_ba.sdf, *_ba.v(hd), STP, TCL (used to run designer), designer.log (logfile)

150

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/smartdesign_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog, *.sv if SystemVerilog

simulation directory - meminit.dat, modelsim.ini files

smartgen directory - GEN files and LOG files from generated cores

stimulus directory - BTIM and VHD stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.srr (Synplify lodfile), *.tcl (used to run synthesis)
and many other files generated by the tools (not managed by Libero SoC)

tooldata directory - includes the log file for your project with device details.

generate_design_initialization_data

This Tcl command creates the memory files on disk, adds the initialization clients to the target memories,
and writes the configuration files to disk.

This command also runs validation on the saved configuration files and writes out errors (if any) in the log.
This command causes the Ul of the Configure Design Initialization Data and Memories tool to refresh and
show the latest configuration and validation errors (if any) in the tables.

This command takes no parameters.

generate_design_initialization_data

See Also

configure design initialization data

Importing Files

Anything that describes your design, or is needed to program the device, is a project source. These may
include schematics, HDL files, simulation files, testbenches, etc. Import these source files.
To import afile:
1. From the File menu, choose Import Files.
2. InFiles of type, choose the file type.
3. InLook in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open.
Note: You cannot import a Verilog File into a VHDL project and vice versa.

File Types for Import

File Type File Extension
Behavioral and Structural VHDL; VHDL Package *.vhd, *.vhdl
Design Block Core *.gen
Verilog Include *.h
Behavioral and Structural Verilog *v, *.sv
Stimulus *vhd, * .vhdI,
*V, *.sv
EDIF Netlist *.edn
Memory file *mem

151

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

File Type File Extension

Components (Designer Blocks, Synplify DSP) *.cxf

Bus Interfaces

When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-
specific bus interfaces:

e AHB — Master, Slave, Mirrored Master, MirroredSlave

e APB - Master, Slave, Mirroredmaster, MirroredSlave

e AXI - Master, Slave, MirroredMaster, MirrorSlave, System
e AXI 4 - Master, Slave, MirroredMaster, MirrorSlave

Layout Error Message: layoutg4NoValidPlacement

This is a generic error produced by the placer when it is unable to place a design. The most common cause
for this failure is that the placer was unable to find a solution which could fit the design into the chip, either
because the design is close to maximum utilization, or logic cannot be fit into user-defined region
constraints.

If Libero is unable to find a legal placement, a list of unplaced cells will be provided in the log. The cells in
this list may not be the cause of the placement problem; it is quite possible that some other constrained
block of logic which was placed first and now prohibits further placement. However, starting with the
unplaced cell list is the easiest and most likely course:

e The simplest potential solution is to remove all placement constraints of the unplaced cells, and re-run
Place & Route.

However, the cells in this list may not be the cause of the placement problem; it is quite possible that some
other constrained block of logic which was placed first and now prohibits further placement. If removing the
placement constraints on the unplaced cells does not succeed:

¢ Remove all region constraints and re-run Place & Route. Some designers make it a practice to put all
their region constraints in a single, separate PDC file; in which case they need only disable that file.

e |If this Place & Route re-run still fails, there may be wider issues with the design's size and
complexity that cannot be addressed by changes to P&R options.

e If the unconstrained Place & Route re-run succeeds, then the user should add back constraints a
few regions at a time in order of "simplicity". Usually, big regions with lots of free space are
"simpler” for the placer, whereas tall/narrow regions with high utilization are "harder". Re-run
Place & Route with each constraint restoration and repeat the process until the failing region(s)
is identified.

Depending on requirements, the failing region may be handled by removing or changing it's
constraints, or revising its design to use less resources.

The user may also re-run the Placer in high-effort mode. Applying high-effort mode to a design which is very
full can incur additional runtime and may produce a placement solution which may not meet tight timing
constraints, owing to the fact that the placer will aggressively attempt to fit the design. In practice, customers
are encouraged to apply the previous suggestions first; and utilize high-effort mode only when other
approaches have been exhausted.

Layout Error Message: layoutg4DesignHard

This design is very difficult to place, and high-effort techniques were required to make it fit. This may lead to
increased layout runtime and diminished timing performance.

152

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

This message typically appears in designs with high utilization -- a very full design, or a design with region
constraints which are, themselves, very full. It can also occur in designs with moderate utilization but with
numerous, long carry chains.

No immediate action is required on the user's part. However, if this notice is observed during Layout, the
resultant performance of the design and the runtime of the Layout tools may not be optimal, and there is a
strong possibility that reducing the size of the design, or relaxing region and floorplanning constraints, will
help to improve timing closure and runtime.

list_clock _groups

This Tcl command lists all existing clock groups in the design.

list_clock_groups

Arguments
None

Example
list_clock _groups

See Also

set_clock groups
remove clock groups

Specifying 1/0O States During Programming - I/O States and BSR Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

1/0 State (Output Only)

Sets your I/O states during programming to one of the values shown in the list below.
e 1-—1/Os are set to drive out logic High
e 0-1/Os are set to drive out logic Low

e Last Known State: I/Os are set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e Z-Tri-State: I/Os are tristated

When you set your /O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 5 - Default /0 Output Settings

Output State Settings

Input Control Output
(Output Enable)

Z (Tri-State) 1 0 0
0 (Low) 1 1 0
1 (High) 0 1 1

Last_Known_State | Last_Known_State | Last_Known_State [Last _Known_State

153

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

Table Key:
e 1 —High: I/Os are set to drive out logic High
e 0-—Low: I/Os are set to drive out logic Low

e Last Known_State - I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details

Sets your I/O state to a specific output value during programming AND enables you to customize the values
for the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to O; the Don't Care
indicates that the other two values are immaterial.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 6 - BSR Details 1/0 Output Settings

Output State Settings
Input Output Enable Output
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State
Table Key:

e 1 —High: I/Os are set to drive out logic High
e 0-Low: I/Os are set to drive out logic Low
e Don't Care — Don't Care values have no impact on the other settings.

e Last_Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering
the programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

154

PolarFire Design Flow User Guide

& Microsemi

Power Matters.”

Specify I/0 States During Programming
Load from file. .. Save ko file... ¥ show BSR. Details
_ Boundary Scan Registers -
Port HName Macro Cell Pin Number Input %l:.lapl;‘::g Dutput
BIST ADLIB:INBUF T2 a 1 1
BvPASS_I0 ADLIB:INBUF K1 a 1 1
CLK ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MONITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMITOR[] ADLIB:OUTBUF c7 1 a a
MOMITOR[Z] ADLIB:OUTBUF k] 1 a a
MONITOR[3] ADLIB:OUTBUF D7 1 a a
MONITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
PAD[11] ADLIB:BIBUF_LYCMOS33D R? 1 a a
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a
PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI
Help | OF I Cancel |

Project Settings Dialog Box

Figure 98 - Boundary Scan Registers

The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options. In Libero SoC, from the Project menu, click Project Settings.

The following figure shows an example of the Project Settings dialog box.

Project settings

Device settings Currently selected device i MPF200TS_ES.1FULLPKGE
Design flow
Analysis cperating conditions Port filker
=i Simulation options
Famity | Polarfire $ Dl | Al % | Package: M s
Wavefarms
Vsim Commands Speed: | A8 = Range: | A1 :
Timescale
= Simulation libraries ey
PotarFire
Search part
Fart Number ~ | DFF User /0% uSAAM LSRAM Matn M-Chip Globals PLL DL =
MPFI0OT_ES-1FCG1152E | 299544 512 2772 952 924 48 [] []
MPFI00T_ES-1FCGAB4E 299544 242 172 52 924 48 [8
MPFI00T_ES-1FCGTBAE 299544 388 e 952 924 48 8 8
MPFI00T ES-1FCSGSIGE | 299544 300 2772 952 924 48 8 8
MPF300T_ES-1FCVGABAE 299544 284 e 952 a4 48 8 8
[T ESFCGIISIE | 299544 512 2772 52 a2, 4 8 a
MPF300T_ES-FOGABAE 299544 242 2772 952 924 48 8 8
MPFI00T_ES-FOGTBAE 299544 388 2172 952 924 48 8]
MPFI0OT_ES-FCSGSIBE | 299344 300 2172 952 524 48 o]
MPFI00T ES-FOVGABAE 299544 264 27172 952 924 48 8 8
MPFI00TS_ES-1FCGL1S2E 299544 512 22 952 924 48 8 a
MPEIOOTS ES-1FCGABAE | 299544 242 2172 952 924 a8 8]
MPF300TS _ES-1FCSGS36E 299544 300 wmn 952 924 48 8 a
MPFI0OTS_ES-FOGLISZE | 299544 512 2772 352 824 48 8 8 v
‘ '

Figure 99 - Project Settings Dialog Box

Device Selection

=)

Sets the device Die and Package for your project. See the New Project Creation Wizard - Device Selection

page for a detailed description of the options.

Device Settings

Default I1/0 Technology - Sets all your I/Os to a default value. You can change the values for individual 1/0s

in the 1/O Attributes Editor.

155

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

System controller suspended mode - When enabled (usually for safety-critical applications), the System
Controller is held in a reset state after the completion of device initialization. This state protects the device
from unintended device programming or zeroization of the device due to SEUs (Single Event Upsets). In this
mode, the System Controller cannot provide any system services such as Flash*Freeze service,
cryptographic services or programming services.

Design Flow
See the Project Settings: Design flow topic for more information.

Analysis Operating Conditions

Sets the Operating Temperature Range, the Core Voltage Range, and Default I/O Voltage Range from the
picklist's provided. Typical values are COM/IND/MIL; but others are sometimes defined.

Only EXT and IND ranges are available for PolarFire at present.
Once the "Range" value is set, the Minimum/Typical/Maximum values for the selected range are displayed.

These settings are propagated to Verify Timing, Verify Power, and Backannotated Netlist for you to perform
Timing/Power Analysis.

Simulation Options and Simulation Libraries
Sets your simulation options. See the Project Settings: Simulation Options topic for more information.

Project Settings: Simulation

To access this dialog box, from the Project menu choose Project Settings and click Simulation options >
DO File.

Use the Simulation tab to set your simulation values in your project. You can set change how Libero SoC
handles Do files in simulation, import your own Do files, set simulation run time, and change the DUT name
used in your simulation. You can also change your library mapping in this dialog box.

FE 5
>] Use stomate DO Se
Simulgtion runtme: 1300 -
e Testhench modue name: tegtanch
@ Senulstion optaes
DO file Tog level nstance rame= <top
Varvefioem:
R — Gorerste VED Bl
Vsim commants
Timesz sl VCD e e
4 Snulstion liberasies
SmartFusiond User defined DO fie:
00 command parameters:
el .

Figure 100 - Project Settings: DO File

DO file

e Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that
will enable you to simulate your design.

e Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is
empty, there will not be a run command included in the run.do file.

e Testbench module name - Specify the name of your testbench entity name. Default is “testbench,”
the value used by WaveFormer Pro.

156

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project
Manager replaces <top> with the actual top level macro when you run simulation
(presynth/postsynth/postlayout).

Generate VCD file - Click the checkbox to generate a VCD file.

VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click
power.vcd and type to change the name.

User defined DO file - Enter the DO file name or click the browse button to navigate to it.
DO command parameters - Text in this field is added to the DO command.

Waveforms

Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line ‘add wave
ltestbench/*" in the DO file run.do. If you select DUT then Project Manager outputs the line ‘add wave
ftestbench/DUT/*" in the run.do file.

Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands

SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the
back-annotated SDF file.

Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/1 +pulse_int_r/1 +transport_int_delays switch is included with the vsim command for
post-layout simulations; the checkbox is disabled by default.

Resolution - The default is 1ps.
Additional options - Text entered in this field is added to the vsim command.

Timescale

TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for
each unit. The default setting is ns.

Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries

Use default library path - Sets the library path to default from your Libero SoC installation.

Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).
Type the pathname or click the Browse button to navigate to your library directory.

Project Settings: Design flow

To access the Design flow page, from the Project menu choose Project Settings and click the Design flow

tab.

157

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

-1 Project settings x

Device selechion
Davice settings.

HDL scurce files language options

Analysis operating conditions Lbe: SOC SUppOItS
< Simulation options Foe Vieriiog Fes
0O file Foe VHDL filos, yi

POFE Verilag and VHDL in this Same peoject
egtion i your Werilay files contain System Verilog constructs

- HOL Lngusge desiges; you en
o Veritay sytax
ot VHOL-TO0K ard VHDL-O%

Wiaveforms

Vsim commands Verilog
Timescale
= Simulation Sbraries System Verilog ® Verilog 2001
PolarFae
VDL
& VHOL-2008 VHOL-93
HDL genarated Mes language options
HDL Files generated by Libem 56 such a6 configured cones, SmartDesign components and post-liyout gate kevel netlists use the preferred language option
Verllog VHDL

Block flow
Enable block creation
Design Hierarchy Build
+ Enable On Demand Build Design Hsrarchy
Reports

Maximum number of high fancut nets to be displayed: |10

! At flow If erroes are found in Physical Design Constraints (POC)

+ Abort fiow If errors are found in Timing Constraints (SDC)

Figure 101 - Project Settings Dialog Box — Design Flow Tab

HDL source files language options

Libero SoC supports mixed-HDL language designs. You can import Verilog and VHDL in the same project.

Sets your HDL to VHDL or Verilog. For VHDL, you can choose VHDL-2008 or VHDL-93. For Verilog, you
can choose System Verilog (if your Verilog files contain System Verilog constructs) or Verilog 2001.

Note: Libero SoC supports the following Verilog and VHDL IEEE standards:
e Verilog 2005 (IEEE Standard 1364-2005)
e Verilog 2001 (IEEE Standard 1364-2001)
e Verilog 1995 (IEEE Standard 1364-1995)
e SystemVerilog 2012 (IEEE Standard 1800-2012)
e VHDL-2008 (IEEE Standard 1076-2008)
e VHDL-93 (IEEE Standard 1076-1993)

HDL generated files language options

HDL files generated by Libero SoC can be set to use VHDL or Verilog. If there are no other considerations, it
is generally recommended to use the same HDL language as you are using for HDL source files, as this
may reduce the cost of simulation licenses.

Block flow

Enable block creation - Enables you to create and publish design blocks (*.cxz files) in Libero SoC. Design
blocks are low-level components that may have completed the place-and-route step and met the timing and
power requirements. These low-level design blocks can then be imported into a Libero SoC project and re-
used as components in a higher level design. See Designing with Designer Block Components in Online
Help for more information.

Design Hierarchy Build

Enable On Demand Build Design Hierarchy - Allows you to build the design hierarchy on demand and
avoid the automatic build. This option is enabled by default for PolarFire devices.

158

https://coredocs.s3.amazonaws.com/Libero/pf_2_1_0/Tool/pf_block_flow_ug.pdf

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”
Reports

Maximum number of high fanout nets to be displayed - Enter the number of high fanout nets to be
displayed. The default value is 10. This means the top 10 nets with the highest fanout will appear in the
<root>_compile_netlist_resource.xml> Report.

Abort Flow Conditions

Abort Flow if Errors are found in Physical Design Constraints (PDC) — Check this checkbox to abort
Place and Route if the I/O or Floorplanning PDC constraint file contains errors.

Abort Flow if Errors are found in Timing Constraints (SDC) — Check this checkbox to abort Place and
Route if the Timing Constraint SDC file contains errors.

remove_clock_groups

This Tcl command removes a clock group by name or by ID.

remove_clock groups [-id id# | —name groupname] \
[-physically_exclusive | -logically_exclusive | -asynchronous]

Note: The exclusive flag is not needed when removing a clock group by ID.

Arguments
-id id#
Specifies the clock group by the ID.
-name groupname
Specifies the clock group by name (to be always followed by the exclusive flag).
[-physically_exclusive | -logically_exclusive | - asynchronous]

Supported Families

Example
Removal by group name
remove_clock_groups —name mygroup3 —physically_exclusive

Removal by goup ID
remove_clock_groups —id 12

See Also

set_clock _groups
list clock groups

Search in Libero SoC

Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.

2. Enter the name or part of name of the object you wish to find in the Find field. *" indicates a wildcard,
and [*-*] indicates a range, such as if you search for al, a2, ... a5 with the string a[1-5].

3. Set the Options for your search (see below for list); options vary depending on your search type.
4. Click Find All (or Next if searching Text).

159

PolarFire Design Flow User Guide C Mlbmsemi.

Power Matters.”

Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it
only locates text that matches the upper- and lowercase characters you enter.

Match whole word: Select to match the whole word only.

| Search Results IIA‘I
| a

3 Bemits for WOLK in 'Curent Open Snariesgn’ for P’

ol pein_to_dded topACLE Pin
vy axd interconmact w SACLE [Pin
g coneAXMSHAN DACLE Pin

H + & » -

Figure 102 - Search Results

Current Open SmartDesign

Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.

Query: Query options vary according to Type.

Type Query Option Function
Instance Get Pins Search restricted to all pins
Get Nets Search restricted to all nets
Get Unconnected Pins Search restricted to all unconnected pins
Net Get Instances Searches all instances
Get Pins Search restricted to all pins
Pin Get Connected Pins Search restricted to all connected pins
Get Associated Net Search restricted to associated nets
Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor

Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.

Find All: Highlights all finds in the text file.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.

Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy

Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

160

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Log Window

Searches your Log window; results are highlighted in the Log window - they do not appear in the Search
Results window.

Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports

Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Files

Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk

Searches the files' content in the specified directory and subdirectories for the text in the Search field;
returns results in the Search window.

Find All: Lists all finds in the Search window.

File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file
types.

set_clock_groups

set_clock_groups is an SDC command which disables timing analysis between the specified clock groups.
No paths are reported between the clock groups in both directions. Paths between clocks in the same group
continue to be reported.

set_clock _groups [-name name]
[-physically_exclusive | -logically_exclusive | -asynchronous]
[-comment comment_string]
—-group clock_list

Note: If you use the same name and the same exclusive flag of a previously defined clock group to create a
new clock group, the previous clock group is removed and a new one is created in its place.

Arguments
-name name
Name given to the clock group. Optional.
-physically_exclusive

Specifies that the clock groups are physically exclusive with respect to each other. Examples are multiple
clocks feeding a register clock pin. The exclusive flags are all mutually exclusive. Only one can be
specified.

-logically_exclusive

Specifies that the clocks groups are logically exclusive with respect to each other. Examples are clocks
passing through a mux.

161

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

—-asynchronous

Specifies that the clock groups are asynchronous with respect to each other, as there is no phase
relationship between them. The exclusive flags are all mutually exclusive. Only one can be specified.

Note: The exclusive flags for the arguments above are all mutually exclusive. Only one can be specified.
—-group clock_list
Specifies a list of clocks. There can any number of groups specified in the set_clock_groups command.

Example
set_clock_groups —name mygroup3 —physically_exclusive \
—group [get_clocks clk_1] —group [get_clocks clk_2]

See Also

list_clock groups
remove clock groups

set_auto_update_mode

This command enables or disables auto update.
set_auto_update_mode {O]1}

If set_auto_update_mode is 0, auto update is disabled. If set_auto_update_mode is 1, auto update is
enabled.

set_plain_text_client

This Tcl command is added to the sNVM .cfg file that is given as the parameter to the configure_snvm
command.
Plain-text Non-Authenticated clients have 252 bytes available for user data in each page of SNVM.
set_plain_text_client

-client_name {<name>}

-number_of_bytes <number>

-content_type {MEMORY_FILE | STATIC_FILL}

-content_file_format {Microsemi-Binary 8/16/32 bit}

-content_file {<path>}

-start_page <number>

-use_for_simulation 0O

-reprogram 0 | 1

-use_as_rom 0 | 1

Arguments
-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file_format
Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.

162

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

-content_file
Path of the memory file. This can be absolute, or relative to the project.
-start_page
The page number in SNVM where data for this client will be placed.
-use_for_simulation
Only value 0 is allowed.
-reprogram
Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are Oor 1.
-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set_plain_text_client \
-client_name {a} \
-number_of _bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_¥files/binary8x12._mem} \
-start_page 1 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O

See Also
set plain_text auth client

set_cipher_text auth client

set_usk client

set_plain_text_auth_client

This Tcl command is added to the SNVM .cfg file that is given as the parameter to the configure_snvm
command.

Plain-text Authenticated clients have 236 bytes available for user data in each page of SNVM.

set_plain_text_auth_client
-client_name {<name>}
-number_of_bytes <number>
-content_type {MEMORY_FILE | STATIC_FILL}
-content_file_format {Microsemi-Binary 8/16/32 bit}
-content_Tfile {<path>}
-start_page <number>
-use_for_simulation 0O
-reprogram 0 | 1
-use_as_rom 0 | 1

Arguments
-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

163

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file _format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in SNVM where data for this client will be placed.
-use_for_simulation

Only value 0 is allowed.
-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values

areOor1.
-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are Oor 1.

Example

set_plain_text_auth_client \
-client_name {b} \
-number_of _bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_Ffiles/binary8x12._mem} \
-start_page 2 \
-use_for_simulation 0 \
-reprogram 1 \
-use_as_rom O

See Also
set plain_text client

set_cipher_text auth client

set_usk client

set_cipher_text_auth_client

This Tcl command is added to the sNVM .cfg file that is given as the parameter to the configure_snvm
command.

Cipher-text Authenticated clients have 236 bytes available for user data in each page of SNVM.

set_cipher_text_auth_client
-client_name {<name>}
-number_of_bytes <number>
-content_type {MEMORY_FILE | STATIC_FILL}
-content_file_format {Microsemi-Binary 8/16/32 bit}
-content_Tfile {<path>}
-start_page <number>
-use_for_simulation O
-reprogram 0 | 1
-use_as_rom 0 | 1

Arguments
-client_name

164

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of_bytes
The size of the client specified in bytes.
-content_type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content_file_format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in SNVM where data for this client will be placed.
-use_for_simulation

Only value 0 is allowed.
-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values

are Oor 1.
-use_as_rom O

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are Oor 1.

Example

set_cipher_text_auth_client \
-client_name {c} \
-number_of _bytes 12 \
-content_type {MEMORY_FILE} \
-content_file_format {Microsemi-Binary 8/16/32 bit} \
-content_file {D:/local_z_folder/work/memory_files/binary8x12_mem} \
-start_page 3 \
-use_for_simulation 0 \
-reprogram 1 \

See Also
set plain_text client

set plain_text auth client

set_usk client

set_usk_client

This Tcl command is added to the sNVM .cfg file that is given as the parameter to the configure_snvm
command.

The USK client is required if SNVM has one or more clients of type ‘Authenticated’.
set_cipher_text_auth_client
-start_page <number>
-key <Hexadecimal string of size 24>

-use_for_simulation 0 | 1
-reprogram 0 | 1

Arguments
-start_page
The page number in SNVM where data for this client will be placed.

165

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

-key
A string of 24 hexadecimal characters.
-use_for_simulation
Boolean field specifies whether the client will be used for simulation or not. Possible values are 0 or 1.
-reprogram
Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are Oor 1.

Example

set_usk_client \
-start_page 4 \
-key {D8C8831F3A2F72EDC569503F} \
-use_for_simulation 0 \
-reprogram 1

See Also
set_plain_text client

set plain_text auth client

set_cipher text auth client

set_clock_uncertainty

Tcl command; specifies a clock-to-clock uncertainty between two clocks (from and to) and returns the ID
of the created constraint if the command succeeded.

set_clock _uncertainty uncertainty -from | -rise_from | -fall_from from _clock_list -to | -
rise_to | -fall_to to_clock_list -setup {value} -hold {value}

Arguments
uncertainty
Specifies the time in nhanoseconds that represents the amount of variation between two clock edges.
-from

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. Only one of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to
be valid.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. Only one
of the —from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. Only one
of the —from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.

-to
Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. Only one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. Only
one of the -to, -rise_to, or -fall_to arguments can be specified for the constraint to be valid.
-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. Only
one of the -to, -rise_to, or -fall_to arguments can be specified for the constraint to be valid.

166

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

to_clock_list
Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

Description

The set_clock_uncertainty command sets the timing uncertainty between two clock waveforms or
maximum clock skew. Timing between clocks have no uncertainty unless you specify it.

Examples
set_clock_uncertainty 10 -from Clkl -to CIk2
set_clock _uncertainty O -from Clkl -fall_to { Clk2 CIk3 } -setup
set_clock_uncertainty 4.3 -fall_from { Clkl CIk2 } -rise_to *
set_clock_uncertainty 0.1 -rise_from [get_clocks { Clkl Clk2 }] -fall_to { CIk3
Clk4 } -setup
set_clock _uncertainty 5 -rise_from Clkl -to [get_clocks {*}]

Organize Source Files Dialog Box — Synthesis

The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:
1. Inthe Design Flow window under Implement Design, right-click Synthesize and choose Organize
Input Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order of the Associated Source files.

4. Click OK.

Il Organize Source files of alpha_proj2 for Synthesize tool HE

Click ko select a Source file in the project, and use the Add button to pass the file to the tool,
Use the Remove button to remove Source files.
Use the Up{Down arrow buttons to specify the order of the Source files when they're passed ko the kool

Use list of files organized by
" Libero (default list)

% Lser LI il

Saurce files in the project Origin Associated Source files Qrigin

jhdl7v1071 w User j custom_apb_peripheral.+ User

Remave |

Figure 103 - Organize Source Files Dialog Box

167

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Specify 1/O States During Programming Dialog Box

The I/O States During Programming dialog box enables you to specify custom settings for 1/0s in your
programming file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a
custom |/O state to manage settings for each Input, Output Enable, and Output associated with an I/O.

Load from file

Load from file enables you to load an 1/0 Settings (*.ios) file. You can use the 10S file to import saved
custom settings for all your I/Os. The exported 10S file have the following format:

e Used I/Os have an entry in the 10S file with the following format:

set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable
<value> -output <value>

e Unused I/Os have an entry in the IOS file with the following format:

set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable
<value> -output <value>

Where <value> is:
e 1-1/Ois set to drive out logic High
e 0-1/Ois set to drive out logic Low

e Last Known_State: I/O is set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e Z - Tri-State: I/O is tristated

Save to file

Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your 1/0Os and
want to use them again later in conjunction with a PDC file.

Port Name
Lists the names of all the ports in your design.

Macro Cell
Lists the I/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the 1/0.

1/0 State (Output Only)

Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you
select the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR
Details help topic for more information on the BSR Details option.

168

PolarFire Design Flow User Guide O M’bmsemi.

Power Matters.”

Specify I/0 States During Programming
Load From file... Save ko file... " Show BSR Details
Port Hame Macro Cell Pin Humber 1/0 State [Output Only]) j
BIST ADLIB:INEUF T2 1
BvPASS_I0 ADLIB:INEUF K1 1
CLE. ADLIB:INEUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTEUF M3 1]
MONITOR[O] ADLIB:OUTEUF BS 1]
MONITOR[] ADLIB:OUTEUF C7 z
MONITOR[Z] ADLIB:OUTEUF k] z
MONITOR([3] ADLIB:OUTBUF D7 z
MONITOR[4] ADLIB:OUTEUF Al z
OEa ADLIB:INEUF E4 z
OEb ADLIB:INEUF F1 z
OSC_EM ADLIB:INBUF K3 z
PAD[10] ADLIB:BIBUF_LWCMOS33U Mg z
PAD[11] ADLIB:BIBUF_LWCMOS33D R¥ z
PAD[12] ADLIB:BIBUF_LWCMOS33U 011 z
PAD[13] ADLIB:BIBUF_L%CMOS330 iz z
PAD[14] ADLIB:BIBUF_LWCMOS33U RE z LI
Help [o]4 I Cancel |

Figure 104 - 1/O States During Programming Dialog Box

Specifying 1/0O States During Programming - 1/0O States and BSR Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

1/0 State (Output Only)

Sets your I/O states during programming to one of the values shown in the list below.
e 1-—1/Os are set to drive out logic High
e 0-—1/Os are set to drive out logic Low

e Last Known State: I/Os are set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e Z - Tri-State: I/Os are tristated

When you set your I/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 7 - Default /0O Output Settings

Output State Settings
Input Control (Output Enable) Output
Z (Tri-State) 1 0 0
0 (Low) 1 1 0
1 (High) 0 1 1
Last_Known_State | Last_Known_State | Last_Known_State Last_Known_State
Table Key:

e 1 —High: I/Os are set to drive out logic High

169

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

e 0O-—Low: I/Os are set to drive out logic Low

e Last Known_State - I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details

Sets your I/O state to a specific output value during programming AND enables you to customize the values
for the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care
indicates that the other two values are immaterial.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 8 - BSR Details I/O Output Settings

Output State Settings
Input Output Enable Output
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State
Table Key:

e 1 —High: I/Os are set to drive out logic High
e 0-—Low: I/Os are set to drive out logic Low
e Don't Care — Don’t Care values have no impact on the other settings.

e Last Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering
the programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

170

PolarFire Design Flow User Guide

Specify I/0 States During Programming

& Microsemi

Load from file. .. Save ko file... ¥ show BSR. Details
_ Boundary Scan Registers -
Port Hame Macro Cell Pin Humber Input %l:.lapl;‘::g Dutput
BIST ADLIB:INBUF T2 a 1 1
BvPASS_I0 ADLIB:INBUF K1 a 1 1
CLK ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MONITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMITOR[] ADLIB:OUTBUF c7 1 a a
MOMITOR[Z] ADLIB:OUTBUF k] 1 a a
MONITOR[3] ADLIB:OUTBUF D7 1 a a
MONITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
PAD[11] ADLIB:BIBUF_LYCMOS33D R? 1 a a
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a
PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI

Help |

Cancel |

Stimulus Hierarchy

Figure 105 - Boundary Scan Registers

Power Matters.”

To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.

The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below)
displays the structure of the modules and component stimulus files as they relate to each other.

171

PolarFire Design Flow User Guide O M’bmsemi.

Power Matters.”

Stimulus Hierarchy 5 X

Show: [7] show Root Testbenches

4 . E top_tbench
4 E pf_pcie_to_ddr3_top
my_axid_interconnect_w
my_corefXI4SRAM
my_pcie
my_transceiver_refCLE
B E'=j_ pf_pcie_to_ddr3_top_PF_TX_PLL_0_PF_TX_PLL (pf_pcie_to_ddr3_top_
4 [testbench (testbench.v)
E=f[axi_master (axi_masterv)
=1 my_corefX4S5RAM_my_coreAXI4SRAM_0_COREAXIMSRAM (CoredXI45R)
B E=j_ th (User_Test_w.v)
> B protecolChecker (PretocolCheckery)
il CorefXI4SRAM_LIB

Design Flow Design Hierarchy Stimulus Hierarchy Catalog | Files |

Figure 106 - Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose
Show Module to view the module for only that component.

Select Components, instance or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus
files.

The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.

Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.

All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus
Hierarchy automatically updates to reflect the change.

To open a stimulus file:
Double-click a stimulus file to open it in the HDL text editor.

Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

172

PolarFire Design Flow User Guide C Mfcmsem’.

Power Matters.”
Timing Exceptions Overview

Use timing exceptions to overwrite the default behavior of the design path. Timing exceptions include:
e Setting multicycle constraint to specify paths that (by design) will take more than one cycle.

e Setting a false path constraint to identify paths that must not be included in the timing analysis or the
optimization flow.

e Setting a maximum delay constraint on specific paths to relax or to tighten the original clock constraint
requirement.

Tool Profiles Dialog Box

The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different
projects.
To set or change your tool profile:
1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.
e To add atool: Select the tool type and click the Add button. Fill out the tool profile and click OK.

e To change atool profile: After selecting the tool, click the Edit button to select another tool,
change the tool name, or change the tool location.

e To remove atool from the project:After selecting a tool, click the Remove button.
2. When you are done, click OK.

Tools = R =
Synthesis Synifesty profies () of] (K]
Simulatson =
Stimuus A tive Hame Fath
Prograrsming @ 5 Synplfy Pro ME Dr\MicrosemiiUbero 12, TTEwnplfybin syrplfy_pro.exe
Identity Debugger s

syrlify_batch “aroduction'EynopsysSympifyipcismplfy_120 150345P 1-21bm),
| syrgitfPF Vidm5sqatest 5 refeases'testiSymopsys (S mpkfy \Symplfy_L2016...
&5_syrphify Yidm Feqatest SyefeasesitestiSmopsys \Synolfy\Symplfy L2056,
|
| o] Expart Profies... oK Cancel

Figure 107 - Libero SoC Tool Profiles Dialog Box

The tool profile with the padlock icon indicates that it is a pre-defined tool profile (the default tool that comes
with the Libero SoC Installation.)

To export the tool profile and save it for future use, click the Export Tool Profiles dialog box and save the
tool profile file as a tool profile *.ini file. The tool profile *.ini file can be imported into a Libero SoC project
(File > Import > Others) and select Tool Profiles (*.ini) in the File Type pull-down list.

User Preferences Dialog Box — Design Flow Preferences

This dialog box allows you to set your personal preferences for how Libero SoC manages the design flow
across the projects you create.

173

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

r = —— ~
#¥ Preferences l P e
@ ™ - s = il W
Softw dat
© E.”e Hpaate Constraint flow
Log window
Startup Warn me when derived timing constraints generation averride existing constraints {enhanced constraint flow).
Internet Access
Text editor Design flow rule checks
IP Cores
Design Flow Warn me when Firmware application must be recompiled because of hardware configuration changes.
Proxy Warn me when IfOs are not all assigned and locked before programming data generation,

SmartDesign generation options

| Generate recursively

@ Generate non-recursively

| Default
T [0K H Cancel I

Figure 108 - Preferences Dialog Box — Design Flow Preferences

Constraint Flow

e Warn me when derived timing constraints generation override existing constraints (enhanced
constraint flow).

Libero SoC can generate/derive timing constraints for known hardware blocks and IPs such as
SERDES, CCC. Check this box to have Libero SoC pop up a warning message when the generated
timing constraints for these blocks override the timing constraints you set for these blocks. This box is
checked by default.

Design Flow Rule Checks

e Warn me when Firmware applications must be recompiled because of hardware configuration
changes.

Check this box if you want Libero SoC to display a warning message. This box is checked by default.
e Warn me when I/Os are not all assigned and locked before programming data generation.

1/0s should always be assigned and locked before programming data generation. Check this box if
you want Libero SoC to display a warning message. This box is checked by default.

SmartDesign Generation Options
e Generate recursively

In this mode, all subdesigns must be successfully generated before a parent can be generated. An
attempt to generate a SmartDesign results in an automatic attempt to generate all subdesigns.

e Generate non-recursively

In this mode, the generation of only explicitly selected SmartDesigns is attempted. The generation of a
design can be marked as successful even if a subdesign is ungenerated (either never attempted or
unsuccessful).

Note: These preferences are stored on a per-user basis across multiple projects; they are not project-
specific.

Synopsys Design Constraints (SDC)

Synopsys Design Constraints (SDC) is a Tcl-based format used by Synopsys tools to specify the design
intent, including the timing and area constraints for a design. Microsemi tools use a subset of the SDC

174

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”

format to capture supported timing constraints. Any timing constraint that you can enter using Designer tools
can also be specified in an SDC file.

Use the SDC-based flow to share timing constraint information between Microsemi tools and third-party EDA
tools.

Command Action

create clock Creates a clock and defines its characteristics

create_generated clock | Creates an internally generated clock and defines its characteristics

set clock latency Defines the delay between an external clock source and the definition pin of a
clock within SmartTime

set_clock_uncertainty Defines the timing uncertainty between two clock waveforms or maximum

skew

set false path Identifies paths that are to be considered false and excluded from the timing
analysis

set_input_delay Defines the arrival time of an input relative to a clock

set_max_delay Specifies the maximum delay for the timing paths

set_min_delay Specifies the minimum delay for the timing paths

set_multicycle path Defines a path that takes multiple clock cycles

set_output_delay Defines the output delay of an output relative to a clock

See Also
SDC Syntax Conventions

libero_design_flow_SDC_commands
SDC Syntax Conventions

The following table shows the typographical conventions that are used for the SDC command syntax.

Syntax Notation Description

command -argument | Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New typeface. You must substitute an
appropriate value for the variable.

[-argument value] Optional arguments begin and end with a square bracket.

Note: SDC commands and arguments are case sensitive.

Example
The following example shows syntax for the create_clock command and a sample command:

create_clock -period period_value [-waveform edge_list] source

175

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

create_clock —period 7 —waveform {2 4}{CLK1}

Wildcard Characters
You can use the following wildcard characters in names used in the SDC commands:

Wildcard What it does

\ Interprets the next character literally

* Matches any string

Note: The matching function requires that you add a backslash (\) before each slash in the pin names in
case the slash does not denote the hierarchy in your design.

Special Characters ([],{}, and)

Square brackets ([]) are part of the command syntax to access ports, pins and clocks. In cases where
these netlist objects names themselves contain square brackets (for example, buses), you must either
enclose the names with curly brackets ({}) or precede the open and closed square brackets ([]) characters
with a backslash (\). If you do not do this, the tool displays an error message.

For example:
create_clock -period 3 clk\[O\]
set_max_delay 1.5 -from [get_pins fF1\[5\]:CLK] -to [get_clocks {clk[0]}]

Although not necessary, Microsemi recommends the use of curly brackets around the names, as shown in
the following example:

set_false_path —from {datal} —to [get_pins {regl:D}]
In any case, the use of the curly bracket is mandatory when you have to provide more than one name.
For example:

set_false_path —from {data3 datad4} —to [get_pins {reg2:D reg5:D}]

Entering Arguments on Separate Lines

If a command needs to be split on multiple lines, each line except the last must end with a backslash (\)
character as shown in the following example:

set_multicycle_path 2 —from \

[get_pins {regl*}] \
-to {reg2:D}

See Also
About SDC Files

create_clock

SDC command; creates a clock and defines its characteristics.

create_clock -name name -period period_value [-waveform edge_list] source

Arguments
-name name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.

176

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

-waveform edge_ list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and ©a
falling edge at instant (period_value/2)ns.

source

Specifies the source of the clock constraint. The source can be ports or pins in the design. If you specify a
clock constraint on a pin that already has a clock, the new clock replaces the existing one. Only one
source is accepted. Wildcards are accepted as long as the resolution shows one port or pin.

Description

Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.

The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

Exceptions

e None

Examples

The following example creates two clocks on ports CK1 and CK2 with a period of 6, a rising edge at 0,
and a falling edge at 3:

create_clock -name {my_user_clock} -period 6 CK1l
create_clock -name {my_other_user_clock} —period 6 —waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling
edge at 4:

create_clock —period 7 —waveform {2 4} [get_ports {CK3}]

Microsemi Implementation Specifics

e The -waveform in SDC accepts waveforms with multiple edges within a period. In Microsemi design
implementation, only two waveforms are accepted.

e SDC accepts defining a clock on many sources using a single command. In Microsemi design
implementation, only one source is accepted.

e The source argument in SDC create_clock command is optional. This is in conjunction with the -name
argument in SDC to support the concept of virtual clocks. In Microsemi implementation, source is a
mandatory argument as -name and virtual clocks concept is not supported.

e The -domain argument in the SDC create_clock command is not supported.

See Also
SDC Syntax Conventions

create_generated_clock

SDC command; creates an internally generated clock and defines its characteristics.

create_generated_clock -name {name -source reference_pin [-divide_by divide factor] [-
multiply_by multiply factor] [-invert] source -pll_output pll_feedback_clock -pll_feedback
pll_feedback_input

Arguments
-name name

177

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-source reference_pin
Specifies the reference pin in the design from which the clock waveform is to be derived.
-divide_bydivide_factor
Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.
-multiply_by multiply_factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.
—-invert
Specifies that the generated clock waveform is inverted with respect to the reference clock.
source
Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint

on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

-pll_output pll_feedback_clock
Specifies the output pin of the PLL which is used as the external feedback clock. This pin must drive the
feedback input pin of the PLL specified using the —pll_feedback option. The PLL will align the rising edge

of the reference input clock to the feedback clock. This is a mandatory argument if the PLL is operating in
external feedback mode.

-pll_feedback pll_feedback_input
Specifies the feedback input pin of the PLL. This pin must be driven by the output pin of the PLL specified

using the —pll_output option. The PLL will align the rising edge of the reference input clock to the external
feedback clock. This is a mandatory argument if the PLL is operating in external feedback mode.

Description

Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.

The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin Ul/reg1:Q with a period twice as long as the period
at the reference port CLK.
create_generated_clock -name {my user_clock} —divide_by 2 —source [get_ports {CLK}]
Ul/regl/Q
The following example creates a generated clock at the primary output of myPLL with a period % of the
period at the reference pin clk.
create_generated_clock —divide_by 3 —multiply_by 4 -source clk [get_pins
{myPLL/CLK1}]

The following example creates a generated clock named system_clk on the GL2 output pin of FCCC_0 with
a period equal to half the period of the source clock. The constraint also identifies GL2 output pin as the
external feedback clock source and CLK2 as the feedback input pin for FCCC_Q0.

create_generated_clock -name { system clk } \
-multiply by 2 \

-source { FCCC_O/CCC_INST/CLK3_PAD } \
-pll_output { FCCC_O/CCC_INST/GL2 } \
-pll_feedback { FCCC_0/CCC_INST/CLK2 } \

178

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

{ FCCC_0/CCC_INST/GL2 }

Microsemi Implementation Specifics

e SDC accepts either —multiply_by or —divide_by option. In Microsemi design implementation, both are
accepted to accurately model the PLL behavior.

e SDC accepts defining a generated clock on many sources using a single command. In Microsemi
design implementation, only one source is accepted.

e The -duty_cycle ,-edges and —edge_shift options in the SDC create_generated_clock command are
not supported in Microsemi design implementation.
See Also
SDC Syntax Conventions

set_clock_latency

SDC command; defines the delay between an external clock source and the definition pin of a clock
within SmartTime.

set_clock_latency -source [-rise][-fall][-early][-late] delay clock

Arguments

-source
Specifies a clock source latency on a clock pin.

-rise
Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

-fall
Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

-invert
Specifies that the generated clock waveform is inverted with respect to the reference clock.

-late
Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"

are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.

-early

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.

delay
Specifies the latency value for the constraint.
clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Description

Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a'"late" delay for this latency, providing an uncertainty which SmartTime propagates through its

179

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

Exceptions
None

Examples

The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.

set_clock_latency —source —-rise —early 0.4 { main_clock }
set_clock_latency —source —fall 1.2 { main_clock }

Microsemi Implementation Specifics

SDC accepts a list of clocks to -set_clock_latency. In Microsemi design implementation, only one clock pin
can have its source latency specified per command.

See Also
SDC Syntax Conventions

set_clock_to_output

SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock_to_output delay value -clock clock _ref [-max] [-min] output_list

Arguments
delay_value

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.

-clock clock_ref
Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.

—-max

Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not
specify —max or —min options, the tool assumes maximum and minimum clock to output delays to be
equal.

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify —max or —min options, the tool assumes maximum and minimum clock to output delays to be
equal.

output_list
Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

set_clock_uncertainty

SDC command; defines the timing uncertainty between two clock waveforms or maximum skew.

set_clock_uncertainty uncertainty (-from | -rise_from | -fall_from) from clock_list (-to | -
rise_to | -fall_to) to_clock_list [-setup | -hold]

180

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges. The
value must be a positive floating point number.

-from
Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock

list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be
valid. This option is the default.

-rise_from
Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.
-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.

-to
Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. You can specify only one of the -to, -rise_to, or -fall_to arguments for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

to_clock_list
Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

Description
Clock uncertainty defines the timing between an two clock waveforms or maximum clock skew.

Both setup and hold checks must account for clock skew. However, for setup check, SmartTime looks for
the smallest skew. This skew is computed by using the maximum insertion delay to the launching
sequential component and the shortest insertion delay to the receiving component.

For hold check, SmartTime looks for the largest skew. This skew is computed by using the shortest
insertion delay to the launching sequential component and the largest insertion delay to the receiving
component. SmartTime makes this distinction automatically.

Exceptions
None

Examples

The following example defines two clocks and sets the uncertainty constraints, which analyzes the inter-
clock domain between clkl and clk2.

create_clock —period 10 clkl
create_generated_clock —name clk2 -source clkl -multiply_by 2 sclkl

181

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

set_clock _uncertainty 0.4 -rise_from clkl -rise_to clk2

Microsemi Implementation Specifics

e SDC accepts a list of clocks to -set_clock_uncertainty.

See Also
SDC Syntax Conventions

set_disable_timing

SDC command; disables timing arcs within the specified cell and returns the ID of the created constraint if
the command succeeded.

set_disable_timing [-from from_port] [-to to_port] cell_name

Arguments
-from from_port
Specifies the starting port.
-to to_port
Specifies the ending port.
cell_name

Specifies the name of the cell in which timing arcs will be disabled.

Description

This command disables the timing arcs in the specified cell, and returns the ID of the created constraint if
the command succeeded. The —from and —to arguments must either both be present or both omitted for
the constraint to be valid.

Examples

The following example disables the arc between a2:A and a2:Y.
set_disable_timing -from portl -to port2 cellname

This command ensures that the arc is disabled within a cell instead of between cells.

Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

set_external_check

SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock ref [-setup] [-hold] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.

-clock clock _ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.

182

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”

-setup or -hold

Specifies that delay_value refers to the setup/hold check at the specified input. This is a mandatory
argument if —hold is not used. You must specify either -setup or -hold option.

input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description

The set_external_check command specifies the external setup and hold times on input ports relative to a
clock edge. This usually represents a combinational path delay from the input port to the clock pin of a
register internal to the current design. For in/out (bidirectional) ports, you can specify the path delays for
both input and output modes. The tool uses external setup and external hold times for paths starting at
primary inputs.

A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor
that will refer to one clock. For example:

[get_clocks {system clk}]
[get_clocks {sys*_clk}]

Examples

The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port
data_in relative to the rising edge of CLK1:

set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]
set_external_check 6 -clock [get clocks CLK1] -hold [get_ports data_in]

See Also
SDC Syntax Conventions

set_false_path

SDC command,; identifies paths that are considered false and excluded from the timing analysis.

set_false_path [-from from_list] [-through through_list] [-to to_list]

Arguments
-from from_list
Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list
Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description

The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.

The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

183

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Examples

The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:

set_false_path —from [get_clocks {clkl}] —to reg_2:D
The following example specifies all paths through the pin U0/U1:Y to be false:
set_false_path -through UO/U1:Y

Microsemi Implementation Specifics

SDC accepts multiple -through options in a single constraint to specify paths that traverse multiple points in
the design. In Microsemi design implementation, only one —through option is accepted.

See Also
SDC Syntax Conventions

set_input_delay

SDC command; defines the arrival time of an input relative to a clock.

set_input_delay delay value -clock clock ref [-max] [-min] [-clock_ fall] input_list

Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-clock_fall
Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
input_list
Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description

The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
infout (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.

A clock is a singleton that represents the name of a defined clock constraint. This can be:
e asingle port name used as source for a clock constraint

e asingle pin name used as source for a clock constraint; for instance regl:CLK. This name can be
hierarchical (for instance toplevel/block1/reg2:CLK)

e an object accessor that will refer to one clock: [get_clocks {clk}]

184

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

Examples

The following example sets an input delay of 1.2ns for port datal relative to the rising edge of CLK1.:
set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports datal]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:

set_input_delay 1.0 -clock_fall -clock CLK2 —min {IN1}
set_input_delay 1.4 -clock_fall -clock CLK2 —max {IN1}

Microsemi Implementation Specifics
In SDC, the -clock is an optional argument that allows you to set input delay for combinational designs.
Microsemi Implementation currently requires this argument.
See Also
SDC Syntax Conventions

set_max_delay (SDC)

SDC command; specifies the maximum delay for the timing paths.

set_max_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

¢ If the path starting point is on a sequential device, the tool includes clock skew in the computed
delay.

¢ If the path starting point has an input delay specified, the tool adds that delay value to the path
delay.

o If the path ending point is on a sequential device, the tool includes clock skew and library setup
time in the computed delay.

¢ If the ending point has an output delay specified, the tool adds that delay to the path delay.
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description

This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual maximum delay targets from clock waveforms and port input

or output delays. For more information, refer to the create_clock, set_input_delay, and set output delay
commands.

The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples

The following example sets a maximum delay by constraining all paths from ffla:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:

185

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

set_max_delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_max_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The —through option in the set_max_delay SDC command is not supported.

See Also
SDC Syntax Conventions

set_min_delay

SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

¢ If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

e If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

¢ If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

¢ If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description

This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.

The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.

The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a minimum delay by constraining all paths from ffla:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:
set_min_delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}
The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:
set_min_delay 3.8 -to [get_ports out*]

186

PolarFire Design Flow User Guide C Micmsemi,

Power Matters.”
Microsemi Implementation Specifics
The —through option in the set_min_delay SDC command is not supported.

See Also
SDC Syntax Conventions

set_multicycle_path

SDC command; defines a path that takes multiple clock cycles.

set_multicycle_path ncycles [-setup] [-hold] [-from from list] [—through through_list] [-to
to_list]

Arguments
ncycles
Specifies an integer value that represents a number of cycles the data path must have for setup or hold

check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.

-setup
Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The

default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.

-hold

Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.

Note: If you do not specify "-setup” or "-hold", the cycle value is applied to the setup check and the
default hold check is performed (ncycles -1).

-from from_list
Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list
Specifies a list of pins or ports through which the multiple cycle paths must pass.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Description

Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.

False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.

If you specify more than one object within one -through option, the path passes through any of the
objects.

Examples
The following example sets all paths between regl and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.
set_multicycle _path 3 -from [get _pins {regl}] —to [get pins {reg2}]
The following example specifies that four cycles are needed for setup check on all paths starting at the

registers in the clock domain ckl1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.

set_multicycle_path 4 -setup -from [get_clocks {ckl}]

187

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

set_multicycle_path 2 -hold -from [get_clocks {ckl}]

Microsemi Implementation Specifics

e SDC allows multiple priority management on the multiple cycle path constraint depending on the scope
of the object accessors. In Microsemi design implementation, such priority management is not
supported. All multiple cycle path constraints are handled with the same priority.

See Also
SDC Syntax Conventions

set_output_delay

SDC command; defines the output delay of an output relative to a clock.

set_output_delay delay value -clock clock_ref [-max] [-min] [-clock fall] output_list

Arguments
delay_value
Specifies the amount of time before a clock edge for which the signal is required. This represents a

combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-clock_fall
Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Description

The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:
set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:

set_output_delay 1.0 -clock fall -clock CLK2 —min {OUT1}
set_output_delay 1.4 -clock_fall -clock CLK2 —max {OUT1}

188

PolarFire Design Flow User Guide

Microsemi Implementation Specifics

e In SDC, the -clock is an optional argument that allows you to set the output delay for combinational

designs. Microsemi Implementation currently requires this option.

See Also

SDC Syntax Conventions

Design Object Access Commands

Design object access commands are SDC commands. Most SDC constraint commands require one of these

commands as command arguments.

Microsemi software supports the following SDC access commands:

Design Object Access Command
Cell get_cells
Clock get_clocks
Net get nets
Port get ports
Pin get pins
Input ports all_inputs
Output ports all_outputs
Registers all_reqisters
See Also

About SDC Files

all_inputs

Design object access command; returns all the input or inout ports of the design.

all_inputs

Arguments

Exceptions

Example

e None

e None

set_max_delay -from [all_inputs] -to [get_clocks ckl]

& Microsemi

Power Matters.”

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.
Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

all_outputs
Design object access command; returns all the output or inout ports of the design.

all_outputs

Arguments

e None
Exceptions

e None
Example

set_max_delay -from [all_inputs] -to [all_outputs]
Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

all_registers
Design object access command; returns either a collection of register cells or register pins, whichever you
specify.

all_registers [-clock clock name] [-cells] [-data_pins]
[-clock pins] [-async_pins] [-output_pins]

Arguments

-clock clock_name
Creates a collection of register cells or register pins in the specified clock domain.
-cells

Creates a collection of register cells. This is the default. This option cannot be used in combination with
any other option.

-data_pins

Creates a collection of register data pins.
-clock_pins

Creates a collection of register clock pins.
-async_pins

Creates a collection of register asynchronous pins.

190

PolarFire Design Flow User Guide Q Micmsemi,

Power Matters.”

-output_pins
Creates a collection of register output pins.

Description
This command creates either a collection of register cells (default) or register pins, whichever is specified.
If you do not specify an option, this command creates a collection of register cells.

Exceptions
e None

Examples

set_max_delay 2 -from [all_registers] -to [get_ports {out}]
set_max_delay 3 —to [all_registers —async_pins]
set_false_path —from [all_registers —clock clk150]
set_multicycle_path —to [all_registers —clock c* -data_pins
—clock_pins]

Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_cells
Design object access command; returns the cells (instances) specified by the pattern argument.

get_cells pattern

Arguments
pattern
Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.
Description
This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a —from, -to, or —through argument for the following constraint exceptions: set_max
delay, set_multicycle_path, and set_false_path design constraints.
Exceptions
None
Examples

set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

191

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”
set_false_path —through [get_cells {Rblock/muxA}]
Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_clocks
Design object access command; returns the specified clock.

get_clocks pattern

Arguments
pattern
Specifies the pattern to match to the SmartTime on which a clock constraint has been set.
Description
e If this command is used as a —from argument in maximum delay (set_max_path_delay), false path
(set_false path), and multicycle constraints (set_multicycle path), the clock pins of all the registers
related to this clock are used as path start points.
e If this command is used as a —to argument in maximum delay (set_max_path_delay), false path
(set_false path), and multicycle constraints (set_multicycle path), the synchronous pins of all the
registers related to this clock are used as path endpoints.
Exceptions
e None
Example

set_max_delay -from [get_ports datal] -to \
[get_clocks ck1l]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

get_pins
Design object access command; returns the specified pins.

get_pins pattern

Arguments

pattern

192

PolarFire Design Flow User Guide Q/ Micmsemi,

Power Matters.”
Specifies the pattern to match the pins.
Exceptions
None
Example
create_clock -period 10 [get_pins clock _gen/reg2:Q]
Microsemi Implementation Specifics

e None

See Also
SDC Syntax Conventions

get_nets
Design object access command; returns the named nets specified by the pattern argument.

get_nets pattern

Arguments

pattern

Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.

Description

This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated clock) constraints and as -through arguments in set false path (set false_path), set
minimum delay (set_min_delay), set maximum delay (set_max_delay), and set multicycle path
(set_multicycle path) constraints.

Exceptions
None
Examples

set_max_delay 2 -from [get_ports RDATA1l] -through [get nets {net_chkpl net_chkqi}]
set_false_path —through [get_nets {Tblk/rm/n*}]
create_clcok -name mainCLK -per 2.5 [get_nets {cknet}]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

193

PolarFire Design Flow User Guide Q/ Micmsemi.

Power Matters.”

get_ports
Design object access command; returns the specified ports.

get_ports pattern

Argument
pattern
Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as —
from argument and $out()[<pattern>] when used as —to argument or $ports()[<pattern>] when used as a —
through argument.
Exceptions
None
Example

create_clock -period 10[get_ports CK1]
Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

194

	Table of Contents
	Welcome to Microsemi's Libero® SoC PolarFire™ v2.1 Release 4
	Libero SoC PolarFire Design Flow 5
	Constraint Flow and Design Sources 8
	File Types in Libero SoC 9
	Software Tools - Libero SoC 10
	Starting the Libero GUI 12
	Design Report 13
	Using the New Project Wizard to Start a Project 13
	Create SmartDesign 19
	Create Core from HDL 20
	Designing with HDL 22
	Designing with Block Flow 23
	SmartDesign Testbench 23
	HDL Testbench 24
	Verify Pre-Synthesized Design - RTL Simulation 25
	Invocation of Constraint Manager From the Design Flow Window 29
	Libero SoC Design Flow 30
	Introduction to Constraint Manager 30
	Import a Constraint File 34
	Constraint Types 38
	Constraint Manager – I/O Attributes Tab 39
	Constraint Manager – Timing Tab 41
	Derived Constraints 43
	Constraint Manager – Floor Planner Tab 43
	Constraint Manager – Netlist Attributes Tab 44
	Synthesize 47
	Compile Netlist 51
	Resource Usage 52
	Constraint Flow in Implementation 54
	Place and Route 59
	Multiple Pass Layout Configuration 61
	Verify Post Layout Implementation 63
	Generate FPGA Array Data 69
	Design and Memory Initialization 69
	Configure Hardware 86
	Configure Programming Options 91
	Configure Security 91
	Program Design 99
	Program SPI Flash Image 107
	Debug Design 111
	Export Bitstream 113
	Export FlashPro Express Job 115
	Export SPI Flash Image 118
	Export Pin Report 118
	Export BSDL File 119

	Libero SoC Introduction
	Welcome to Microsemi's Libero® SoC PolarFire™ v2.1 Release
	More Information

	Libero SoC PolarFire Design Flow
	Create Design
	Constraints
	Manage Constraints
	See Also

	Implement
	Netlist Viewer User Guide
	Synthesize
	Place and Route
	Verify Post Layout Implementation

	Program and Debug Design
	Generate FPGA Array Data
	Design and Memory Initialization
	Configure Hardware
	Configure Programming Options
	Configure Security Wizard
	Program Design
	Debug Design

	Handoff Design for Production
	Export Bitstream
	Export SPI Flash Image
	Export FlashPro Express Job
	Export Pin Report
	Export BSDL

	Handoff Design for Debugging (Export SmartDebug Data)

	Constraint Flow and Design Sources
	Constraint Flow for HDL designs
	Constraint Flow for EDIF designs

	File Types in Libero SoC
	Internal Files

	Software Tools - Libero SoC

	Libero Design Flow
	Starting the Libero GUI
	The Design Flow Window

	Design Report
	Using the New Project Wizard to Start a Project
	New Project Creation Wizard – Project Details
	Project

	See Also
	New Project Creation Wizard – Device Selection
	New Project Creation Wizard – Device Settings
	New Project Creation Wizard – Add HDL Source Files
	New Project Creation Wizard - Add Constraints

	Create and Verify Design
	Create SmartDesign
	About SmartDesign
	Create New SmartDesign
	Generating a SmartDesign Component
	Generate Recursively vs. Non-Recursively

	Create Core from HDL
	To create a core from your HDL:
	Edit Core Definition
	Remove Core Definition

	Designing with HDL
	Create HDL
	Using the HDL Editor
	HDL Syntax Checker
	Commenting Text
	Find
	Column Editing

	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC

	Designing with Block Flow
	SmartDesign Testbench
	HDL Testbench
	HDL Type
	Name
	Clock Period (ns)

	Verify Pre-Synthesized Design - RTL Simulation
	Simulation Options
	DO File
	Waveforms
	Vsim Commands
	Simulation Libraries

	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation

	Libero SoC Constraint Management
	Invocation of Constraint Manager From the Design Flow Window
	Libero SoC Design Flow
	Introduction to Constraint Manager
	Synthesis Constraints
	Synplify Netlist Constraints (*.fdc)
	Compile Netlist Constraints (*.ndc)
	SDC Timing Constraints (*.sdc)
	Derived Timing Constraints (*.sdc)

	Place and Route Constraints
	I/O PDC Constraints
	Floorplanning PDC Constraints
	Timing SDC Constraint file (*.sdc)

	Timing Verifications Constraints
	Constraint Manager Components
	Constraint File and Tool Association
	Derive Constraints in Timing Tab
	Create New Constraints
	Constraint File Order

	Import a Constraint File
	Link a Constraint File
	Check a Constraint File
	Check Result

	Edit a Constraint File
	See Also:

	Constraint Types
	Constraint Manager – I/O Attributes Tab
	File and Tool Association
	I/O Settings

	Constraint Manager – Timing Tab
	File and Tool Association
	Example

	Derived Constraints
	Constraint Manager – Floor Planner Tab
	File and Tool Association
	See Also

	Constraint Manager – Netlist Attributes Tab
	File and Tool Association

	Implement Design
	Synthesize
	Synthesize Options
	HDL Synthesis Language Settings
	Global Nets (Promotions and Demotions)
	Optimizations
	Additional options for Synplify Pro synthesis

	Synplify Pro ME
	Identify Debug Design

	Compile Netlist
	Options

	Resource Usage
	Overlapping of Resource Reporting

	Constraint Flow in Implementation
	Design State Invalidation
	Constraints and Design Invalidation

	Check Constraints
	Design State and Constraints Check

	Edit Constraints
	Constraint Type and Interactive Tool

	Place and Route
	Place and Route Options
	Timing-Driven
	Power-Driven
	Driver Replication
	High Effort Layout
	Repair Minimum Delay Violations
	Incremental Layout
	Use Multiple Pass
	Block Creation – Number of row-global resources

	See Also

	Multiple Pass Layout Configuration
	Iteration Summary Report
	See Also

	Verify Post Layout Implementation
	Verify Timing
	Verify Timing Configuration
	Types of Timing Reports

	SmartTime
	Verify Power
	Verify Power sub-commands
	SmartPower

	Program and Debug Design
	Generate FPGA Array Data
	Design and Memory Initialization
	Configure Design Initialization Data and Memories
	First Stage (sNVM)
	Second Stage (sNVM)
	Third Stage (uPROM/sNVM/SPI Flash)
	Memory Type for third stage Initialization Client
	SPI Clock Divider Value

	Time-Out
	Custom Configuration File
	Apply
	Discard

	See Also
	Configure uPROM
	Add
	Edit
	Delete
	Load Design Configuration
	Usage Statistics
	Apply
	Discard

	See Also
	Add/Edit uPROM Client
	Client name
	Content from File
	Content filled with 0s
	Start Address
	Number of 9-bit words
	Use for initialization of RAMs
	Use Content for simulation

	Configure sNVM
	Add
	Adding Text Clients
	Adding a USK Client
	Edit
	Delete
	Load Design Configuration
	Usage Statistics
	Apply
	Discard

	See Also
	Add sNVM Clients
	Add Text client
	Client name
	Content from File
	Content filled with 0s
	No Content
	Start Page
	Number of bytes
	Use Content for simulation
	Use as ROM

	Add USK client
	Start Page
	USK Key
	Reprogram
	Use Content for Simulation
	Use as ROM

	Configure SPI Flash
	Enable Auto Update
	Manufacturer
	Usage Statistics
	SPI Flash Clients
	SPI Bitstream Client for Recovery/Golden
	SPI Bitstream Client for Auto Update
	Data Storage Client

	Add
	Edit
	Delete
	Apply
	Discard
	See Also
	Add/Edit SPI Bitstream Client
	Name
	Content
	SPI Bitstream for IAP
	SPI Bitstream for Recovery/Golden
	SPI Bitstream for Auto Update

	Browse Button
	Filled with 1s
	Start Address (HEX)
	Size in bytes (decimal)
	See Also

	Add/Edit Data Storage Client for SPI Flash
	Name
	Content
	Memory file
	Filled with 1s

	Start Address (HEX)
	Size in bytes (decimal)
	See Also

	RAM Initialization
	Depth x Width Configuration
	Optimization Options
	Initialization Options
	No Content
	Content Filled with Zeros
	Memory File

	Load Design Configuration
	Apply
	Discard

	Generate Design Initialization Data
	See Also

	Configure Hardware
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-Click Properties

	Programmer Settings
	FlashPro5/4/3/3X Programmer Settings
	TCK Setting (ForceTCK Frequency)
	Default TCK frequency

	Device I/O States During Programming -- JTAG Mode Only

	Configure Programming Options
	Configure Security
	Configure Security Wizard
	Summary Window
	Security Key Mode
	Back
	Next
	Finish
	Save Summary to File

	User Keys
	User Key Set 1 (UKS1)
	User Encryption Key 1 (UEK1)
	User Encryption Key 2 (UEK2)
	User Pass Key 2 (UPK2)

	Update Policy
	Fabric update protection
	sNVM update protection options:
	Back Level protection
	Design version (number between 0 to 65535)
	Back Level version (number between 0 to 65535)

	Disable programming interfaces
	Disable Bitstream Programming Actions (JTAG/SPI Slave)
	Reset to Default

	Debug Policy
	Debug with DPK (Debug Pass Key) - Optional
	SmartDebug Access Control

	Microsemi Factory Access Policy
	JTAG/SPI Slave Command Policy
	Security Features Frequently Asked Questions

	Program Design
	Configure Bitstream
	See Also
	Generate Bitstream
	See also
	Run PROGRAM Action
	Programming File Actions
	Options Available in Programming Actions

	Exit Codes (PolarFire)

	Program SPI Flash Image
	Generate SPI Flash Image
	Run PROGRAM_SPI_FLASH Action
	Configure SPI Flash Image Actions and Procedures

	Debug Design
	Identify Debug Design
	SmartDebug
	Integrated Mode
	Standalone Mode
	See Also

	SmartDebug User Guide

	Handoff Design for Production
	Export Bitstream
	Bitstream Encryption with Default Key in the Security Policy Wizard
	Enable Custom Security Options in the Security Policy Wizard
	Security Programming Files

	Export FlashPro Express Job
	Select Bitstream Encryption with Default Key in the Configure Security Wizard
	Enable Custom Security Options in the Configure Security Wizard
	Prepare Design for Production Programming in FlashPro Express

	Export SPI Flash Image
	Name
	Location
	Existing files
	See Also

	Export Pin Report
	Export BSDL File

	Export SmartDebug Data (Libero SoC)
	References
	Arguments
	Examples
	configure_uprom
	Arguments

	See Also
	Configure uPROM
	Sample uPROM Configuration File
	configure_spiflash
	Arguments
	See Also
	Sample SPI Flash Configuration File

	Adding or Modifying Bus Interfaces in SmartDesign
	Catalog
	Viewing Cores in the Catalog
	Catalog Options

	Catalog Options Dialog Box
	Vault/Repositories Settings
	Repositories
	Vault location

	View Settings
	Display
	Filters

	Changing Output Port Capacitance
	Core Manager
	configure_design_initialization_data
	Arguments
	Example

	See Also
	configure_snvm
	Arguments

	See Also
	Sample sNVM Configuration File

	See Also
	Importing Source Files – Copying Files Locally
	Create Clock Constraint Dialog Box
	Clock Source
	Clock Name
	T(zero) Label
	Period
	Frequency
	Offset (Starting Edge Selector)
	Duty Cycle
	Offset
	Comment

	See Also
	Select Source Pins for Clock Constraint Dialog Box
	Available Pins
	Filter Available Pins

	See Also
	Specifying Clock Constraints
	Create Generated Clock Constraint Dialog Box
	Clock Pin
	Reference Pin
	Generated Clock Name
	Generated Frequency
	Generated Waveform
	Comment

	See Also
	Select Generated Clock Source Dialog Box
	Filter Available Pins

	Specifying Generated Clock Constraints
	Select Generated Clock Reference Dialog Box
	Filter Available Pins

	See Also
	Design Hierarchy in the Design Explorer
	Digest File
	Use Case
	Example Using STAPL File
	Example Using Programming Job

	Design Rules Check
	Message Types:

	Editable Constraints Grid
	export_spiflash_image
	Arguments

	See Also
	Export Flash Image
	extended_run_lib
	Arguments
	Return
	Supported Families
	Exceptions

	See Also
	Files Tab and File Types
	File Types

	generate_design_initialization_data

	See Also
	configure_design_initialization_data
	Importing Files
	File Types for Import

	Bus Interfaces
	Layout Error Message: layoutg4NoValidPlacement
	Layout Error Message: layoutg4DesignHard
	list_clock_groups
	Arguments
	Example

	See Also
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Project Settings Dialog Box
	Device Selection
	Device Settings
	Design Flow
	Analysis Operating Conditions
	Simulation Options and Simulation Libraries

	Project Settings: Simulation
	DO file
	Waveforms
	Vsim Commands
	Timescale
	Simulation Libraries

	Project Settings: Design flow
	HDL source files language options
	HDL generated files language options
	Block flow
	Design Hierarchy Build
	Reports
	Abort Flow Conditions

	remove_clock_groups
	Arguments
	Supported Families
	Example

	See Also
	Search in Libero SoC
	Current Open SmartDesign
	Current Open Text Editor
	Design Hierarchy
	Stimulus Hierarchy
	Log Window
	Reports
	Files
	Files on disk

	set_clock_groups
	Arguments
	Example

	See Also
	set_auto_update_mode
	set_plain_text_client
	Arguments
	Example

	See Also
	set_plain_text_auth_client
	Arguments
	Example

	See Also
	set_cipher_text_auth_client
	Arguments
	Example

	See Also
	set_usk_client
	Arguments
	Example

	See Also
	set_clock_uncertainty
	Arguments
	Description
	Examples

	Organize Source Files Dialog Box – Synthesis
	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Stimulus Hierarchy
	Timing Exceptions Overview
	Tool Profiles Dialog Box
	User Preferences Dialog Box – Design Flow Preferences
	Constraint Flow
	Design Flow Rule Checks
	SmartDesign Generation Options

	Synopsys Design Constraints (SDC)
	See Also
	libero_design_flow_SDC_commands
	SDC Syntax Conventions
	Example
	Wildcard Characters
	Special Characters ([], { }, and \)
	Entering Arguments on Separate Lines

	See Also
	create_clock
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	create_generated_clock
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_clock_latency
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_clock_to_output
	Arguments

	set_clock_uncertainty
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_disable_timing
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_external_check
	Arguments
	Description
	Examples

	See Also
	set_false_path
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_input_delay
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_max_delay (SDC)
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_min_delay
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_multicycle_path
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_output_delay
	Arguments
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	Design Object Access Commands

	See Also
	all_inputs
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_outputs
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_registers
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_cells
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_clocks
	Arguments
	Description
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_pins
	Arguments
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_nets
	Arguments
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_ports
	Argument
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also

